Math, asked by gauravkumar735paf05j, 1 year ago

64(9)^{x} -84(12)^{x} +27(16)^{x} =0
find x

Answers

Answered by Deepsbhargav
7
☆HEY FRIEND !!!!☆

===================
HERE IS YOUR ANSWER ☞
===================




given \:  =  > \\  \\ 64( {9}^{x} ) - 84( {12}^{x} ) + 27( {16}^{x} ) = 0 \\  \\  =  > 64( {3}^{2x} ) - 84( {3}^{x} . {4}^{x} ) + 27( {4}^{2x} ) = 0 \\  \\  dividing \: whole \: equation \: by \: ( {4}^{2x} ) \:  \:  \:  \\  \\ we \: get \:  =  >  \\  \\  =  > 64 (\frac{ {3}^{2x} }{ {4}^{2x} } ) - 84( \frac{ {3}^{x} . {4}^{x} }{  {4}^{2x} } ) + 27( \frac{ {4}^{2x} }{ {4}^{2x} } ) = 0 \\  \\  =  > 64( { \frac{3}{4}) }^{2x}  - 84( { \frac{3}{4} )}^{x}  + 27 = 0 \\  \\ lets \:(  { \frac{3}{4} )}^{x}  = m \\  \\  =  > 64 {m}^{2}  - 84m + 27 = 0 \\  \\ using \: quadratic \: formula \: we \: get \\  \\  =  > m =  \frac{ - b \binom{ + }{ - } \sqrt{ {b}^{2} - 4ac }  }{2a}  \\  \\  =  >  m =  \frac{ - ( - 84) \binom{ + }{ - }  \sqrt{ {84}^{2} - 4 \times 64 \times 27 } }{2 \times 64}  \\  \\  =  > m =  \frac{84 \binom{ + }{ -  }  \sqrt{7056 - 6912} }{128}  \\  \\  =  > m =  \frac{84 \binom{ + }{ - }  \sqrt{144} }{128}  \\  \\  =  > m =  \frac{84 \binom{ + }{ - }12 }{128}  \\  \\  =  > m =  \frac{84 + 12}{128}  \:  \:  \:  \: or \:  \:  \:  \: m =  \frac{84 - 12}{128}  \\  \\  =  > m =  \frac{3}{4}  \:  \:  \: or \:  \:  \:  \: m =  \frac{9}{16}  \\  \\ now \\  \\  { (\frac{3}{4}) }^{x}  =  \frac{3}{4}  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  (  { \frac{3}{4} )}^{x}  =  \frac{9}{16}  \\  \\  { (\frac{3}{4}) }^{x} =  { (\frac{3}{4} )}^{1}   \:  \:  \:  \: or \:  \:  \:  \:  \: ( { \frac{3}{4}) }^{x}  =  { (\frac{3}{4}) }^{2}  \\  \\ comparing \: both \: sides \: we \: get \\  \\  =  >  \:  \:  \: x = 1 \:  \: or \:  \:  \: x = 2 \:  \:  \:  \: .....answer


==================
HOPE IT WILL HELP YOU ☺☺
==================

DEVIL_KING ▄︻̷̿┻̿═━一
Similar questions