64. A two-digit number is obtained by either
multiplying the sum of the digits by 8 and then
subtracting 5 or by multiplying the difference of the
digits by 16 and then adding 3. Find the number,
[NCERT Exemplar)
Answers
AnswEr :
Let the two digit number be 10x + y
◐ Two digit number is obtained by multiplying sum of the digits by 8 and subtracting 5
⇒ 10x + y = 8(x + y) - 5
⇒ 10x + y = 8x + 8y - 5
⇒ 10x - 8x + y - 8y + 5 = 0
⇒ 2x - 7y + 5 = 0⠀⠀⠀⠀--( ¡ )
⠀
⠀
◐ Two digit number is obtained by multiplying the difference of the digits by 16 and adding 3
⇒10x + y = 16(x - y) + 3
⇒10x + y = 16x - 16y + 3
⇒10x - 16x + y + 16y - 3 = 0
⇒-6x + 17y - 3 = 0⠀⠀⠀⠀--( ¡¡ )
⠀
━━━━━━━━━━━━━━━━━━━━━━━━
⠀
Multiplying (¡) by 3 and Now ;
➟ 6x - 21y + 15 = 0
➟ -6x + 17y -⠀3 = 0
___________________
➟ - 4y + 12 = 0
⠀
➟ 12 = 4y
⠀
➟ = y
⠀
➟ y = 3
━━━━━━━━━━━━━━━━━━━━━━━━
⠀
Putting the Value of y = 3 in (¡)
⠀
➟ 2x - 7y + 5 = 0
⠀
➟ 2x - (7 × 3) + 5 = 0
⠀
➟ 2x - 21 + 5 = 0
⠀
➟ 2x - 16 = 0
⠀
➟ 2x = 16
⠀
➟ x =
⠀
➟ x = 8
⠀
⠀
Required Number is 83.
Answer :
Let the Number be a and b.
A.T.Q.
➡ 8(a + b) - 5 = 10a + b⠀⠀⠀---(1)
➡ 16(a - b) + 3 = 10a + b⠀⠀---(2)
★ From (1) and (2)
➡ 8(a + b) - 5 = 16(a - b) + 3
➡ 8a + 8b - 5 = 16a - 16b + 3
➡ 8a - 16a + 8b + 16b - 5 - 3 = 0
➡ - 8a + 24b - 8 = 0
➡ 24b = 8a + 8
➡ 8 × 3b = 8(a + 1)
- Cancelling 8 from Both Side
➡ 3b = a + 1
________________________________
★ Now We will try Trial and Error Method
➞ Let's take a = 2 and, b = 1
➞ 3b = a + 1
➞ 3 × 1 = 2 + 1
➞ 3 = 3
† Number can be 21
» 8(a + b) - 5 = 16(a - b) + 3
» 8(2 + 1) - 5 = 16(2 - 1) + 3
» 8 × 3 - 5 = 16 × 1 + 3
» 24 - 5 = 16 + 3
» 19 = 19 . Verified ✓
________________________________
➞ Let's take a = 8 and, b = 3
➞ 3b = a + 1
➞ 3 × 3 = 8 + 1
➞ 9 = 9
† Number can be 83 also.
» 8(a + b) - 5 = 16(a - b) + 3
» 8(8 + 3) - 5 = 16(8 - 3) + 3
» 8 × 11 - 5 = 16 × 5 + 3
» 88 - 5 = 80 + 3
» 83 = 83 . Verified ✓
⠀
⠀