64^x=48^y=36^z,prove,1/x+1/z=2/y
Answers
Answered by
36
Let (64)^x =(48)^y =(36)^z =K
So 64= K^1/x
48 =K^1/y
36 = K^1/z
So now K^1/y / K^1/x = 48/64
Or K^(1/y-1/x) =48/64 =3/4
AGAIN SIMILARLY
K^(1/z-1/y) =36/48 =3/4
SO K^(1/y -1/x) = K^(1/z -1/y) =3/4
Or (1/y -1/x)= (1/z -1/y) as base "K" is samefor bothe index.
Or1/y + 1/y = 1/z + 1/x
Or 2/y = 1/z + 1/x
So 1/x + 1/z =2/y..PROVED.
OrK^{1/2(1/z-1/x)} =3/4
Answered by
0
Step-by-step explanation:
We know that
64×36=(48)^2
Let
(64)^x=(48)^y=(36)^z=k
or; 64=k^1/x
48=k^1/y
36=k^1/z
64×36=(48)^2
k^1/x × k^1/y = (k^1/z)^2
or, 1/x + 1/y = 2/z [Proved ]
Similar questions