Math, asked by vs3042rajawat, 11 hours ago

₹6400 for 2 years at 15% p.a. compounded annually.

Answers

Answered by Anonymous
29

Given :

  • ➙ Principal = 6400
  • ➙ Rate = 15 %
  • ➙ Time = 2 years

\rule{200pt}{3pt}

To Find :

  • ➙ Compound Interest = ?
  • ➙ Amount = ?

\rule{200pt}{3pt}

Solution :

Formula Used :

\large{\color{blue}{\bigstar}} \: \: {\underline{\boxed{\red{\sf{ C.I = P \bigg\lgroup1 + \dfrac{R}{100} \bigg\rgroup^T - P }}}}}

 \\ \large{\color{blue}{\bigstar}} \: \: {\underline{\boxed{\red{\sf{ Amount = P + C.I }}}}}

Where :

  • ➳ C.I = Compound Interest
  • ➳ P = Principal
  • ➳ R = Rate
  • ➳ T = Time

{\qquad{\rule{150pt}{1pt}}}

Calculating the Compound Intrest :

{\dashrightarrow{\qquad{\sf{ C.I = P \bigg\lgroup1 + \dfrac{R}{100} \bigg\rgroup^T - P }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ C.I = 6400 \bigg\lgroup1 + \dfrac{15}{100} \bigg\rgroup^2 - 6400 }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ C.I = 6400 \bigg\lgroup1 + \cancel\dfrac{15}{100} \bigg\rgroup^2 - 6400 }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ C.I = 6400 \bigg\lgroup1 + 0.15 \bigg\rgroup^2 - 6400 }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{C.I  = 6400 \bigg\lgroup1.15 \bigg\rgroup^2 - 6400 }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ C.I = 6400 \times 1.15 \times 1.15 - 6400 }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ C.I = 6400 \times 1.3225 - 6400 }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{C.I = 8464 - 6400 }}}} \\ \\ \ \large{\qquad{\orange{:\longmapsto{\underline{\overline{\boxed{\purple{\sf{ ₹ \: 2064 }}}}}}}}}{\pink{\bigstar}}

\qquad{\rule{150pt}{1pt}}

Calculating the Amount :

{\dashrightarrow{\qquad{\sf{ Amount = P + C.I }}}} \\ \\ \ {\dashrightarrow{\qquad{\sf{ Amount = 6400 + 2064 }}}} \\ \\ \ \large{\qquad{\orange{:\longmapsto{\underline{\overline{\boxed{\color{green}{\sf{ ₹ \: 8464 }}}}}}}}}{\pink{\bigstar}}

\qquad{\rule{150pt}{1pt}}

Therefore :

❝ Compound Interest on this sum of money is 2064 and the Amount is 8464 . ❞

 \\ {\underline{\rule{300pt}{9pt}}}

Answered by Anonymous
14

Answer:

Right Question :

Find the compound interest on Rs. 6400 for 2 years, compounded annually at 15% per annum.

\begin{gathered}\end{gathered}

Given :

  • ➞ Principle = Rs.6400
  • ➞ Time = 2 years
  • ➞ Rate = 15% per annum.

\begin{gathered}\end{gathered}

To Find :

  • ➞ Amount
  • ➞ Compound Interest

\begin{gathered}\end{gathered}

Concept :

➭ Here we have given that the Principal is Rs.6400, Time is 2 years and Rate is 15 p.c.p.a. As we know that to find the compound interest we need Amount. So firstly we will find out the amount.

➭ After finding the amount we will find out the Compound interest by substituting the values in the formula.

\begin{gathered}\end{gathered}

Using Formulas :

\longrightarrow\small{\underline{\boxed{\sf{A= P\bigg(1 + \dfrac{ {R}}{100} \bigg)^{T}}}}}

\longrightarrow\small{\underline{\boxed{\sf{{C.I=A- P}}}}}

Where :

  • ➟ A = Amount
  • ➟ P = Principle
  • ➟ R = Rate
  • ➟ T = Time
  • C.I = Compound Interest

\begin{gathered}\end{gathered}

Solution :

Firstly, finding the amount by substituting the values in the formula :

\dashrightarrow \:  \: {\sf{A= P\bigg(1 + \dfrac{ {R}}{100} \bigg)^{T}}}

\dashrightarrow \:  \: {\sf{A= 6400\bigg(1 + \dfrac{15}{100} \bigg)^{2}}}

{\dashrightarrow \:  \: {\sf{A= 6400\bigg(\dfrac{(1 \times 100) + (15 \times 1)}{100} \bigg)^{2}}}}

{\dashrightarrow \:  \: {\sf{A= 6400\bigg(\dfrac{100 + 15}{100} \bigg)^{2}}}}

{\dashrightarrow \:  \: {\sf{A= 6400\bigg(\dfrac{115}{100} \bigg)^{2}}}}

{\dashrightarrow \:  \: {\sf{A= 6400\bigg(\cancel{\dfrac{115}{100}} \bigg)^{2}}}}

{\dashrightarrow \:  \: {\sf{A= 6400\bigg( \dfrac{23}{20} \bigg)^{2}}}}

{\dashrightarrow \:  \: {\sf{A= 6400\bigg( \dfrac{23}{20} \times  \dfrac{23}{20} \bigg)}}}

{\dashrightarrow \:  \: {\sf{A= 6400\bigg( \dfrac{529}{400} \bigg)}}}

{\dashrightarrow \:  \: {\sf{A= 6400 \times  \dfrac{529}{400}}}}

{\dashrightarrow \:  \: {\sf{A= \cancel{6400}\times  \dfrac{529}{\cancel{400}}}}}

{\dashrightarrow \:  \: {\sf{A= 16 \times 529}}}

{\dashrightarrow \:  \: {\sf{A= Rs.8464}}}

{\bigstar \: \pink{\underline{\boxed{\sf{Amount= Rs.8464}}}}}

∴ The amonut is Rs.8464.

\rule{300}{1.5}

Now, finding the compound interest by substituting the values in the formula :

\dashrightarrow \:  \: {\sf{{C.I=A- P}}}

\dashrightarrow \:  \: {\sf{{C.I=8464 - 6400}}}

\dashrightarrow \:  \: {\sf{{C.I=Rs.2064}}}

{\bigstar \: \pink{\underline{\boxed{\sf{Compund \:  Interest= Rs.2064}}}}}

∴ The compound interest is Rs.2064.

\begin{gathered}\end{gathered}

Learn More :

»» Principal: Money which is taken or given in the form of loan. That's called the principal. It is denoted by P.

»» Time: The period for which the loan is taken or given is called time. It is expressed by T or t.

»» Rate: The rate at which interest is charged or paid is called interest rate. It is denoted by r or R.

»» Interest: In addition to the principal amount, which is refunded, interest is paid. It is denoted by I.

»» Amount: For example, money taken is called principal and money returned is called compound.

\longrightarrow\small{\underline{\boxed{\sf{\red{ Simple \: Interest = \dfrac{P \times R \times T}{100}}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\red{Amount={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\red{Amount = Principle + Interest}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\red{ Principle=Amount - Interest }}}}}

\longrightarrow\small{\underline{\boxed{\sf{\red{Principle = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\red{Principle = \dfrac{Interest \times 100 }{Time \times Rate}}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\red{Rate = \dfrac{Simple \: Interest \times 100}{Principle \times Time}}}}}}

\longrightarrow\small{\underline{\boxed{\sf{\red{Time = \dfrac{Simple \: Interest \times 100}{Principle \times Rate}}}}}}

{\rule{220pt}{2.5pt}}

Similar questions