650 ml is
please answer my questions
Answers
★Question
➽ Find dy/dx when x²+y² = sin (xy)
★ Solution
★ Given
➽ x²+y²= sin (xy)
To find
➽ dy/dx
So,
➽ x²+y² = sin (xy)
We know that
➽ d/dx (u+v) = d/dx (u) + d/dx (v)
➽ d/dx (x²)+d/dx(y²) = d/dx [ sin (xy) ]
★ Now,
➽ d/dx (xⁿ) = n^-1
➽ 2x+d/dx(y²) = d/dx [sin(xy)]
★We know that
➽ du/dv= du/dx × dx/dv
➽ 2x + d/dy(y²) × dy/dx = d/dx [sin (xy)]
➽ 2x + 2y dy/dx = d/dx [ sin (xy)]
Now,
➽ d/dx(sin x) = cos (x)
➽ dx/dx[f(g(x))]= d/dz[f(x)]•d/dx[g(x)]
➽ 2x+2y dy/dx = cos (xy)/d/dx (xy)
We know that,
➽ d/dz(uv) = v d/dx (u) + u d/dx (v)
➠ 2x+2y dy/dx = cos (xy) [ y d/dx (x) +x d/dy (y) ]
➠ 2x+2dy/dx = cos (xy)[y×1+x d/dy (y) × dy/dx]
➠ 2x+2y dy/dx = cos (xy) [ y+x dy/dx ]
➠ 2x+2y dy/dx = cos (xy ) [ y+x dy/dx]
➠ 2x+2y dy/dx = cos (xy)y + x dy/dx cos (xy)
➠ 2y dy/dx - x cos (xy) dy/dx = cos (xy) y-2x
➠ dy/dz[ 2y -x cos (xy) ] = cos (xy) y-2x
Answer:
0.650 l
Step-by-step explanation:
1000 ml / 650 ml = 0.650 l