Math, asked by gaurikuchar, 4 months ago

=
68. If E= alog b-log c + blog c-log a + clog a-log b
where a, b, c > 0, then : Emin
(a) 0
(b) 1
(c) 3
(d) 9​

Answers

Answered by mathdude500
9

Correct Question :-

If a, b, c > 0, then find the minimum value of E,

\bf \:E = {a}^{logb - logc}  +  {b}^{logc - loga}  +  {c}^{loga - logb}

Answer

Given :-

\bf \:E = {a}^{logb - logc}  +  {b}^{logc - loga}  +  {c}^{loga - logb}

To find :-

  • Minimum value of E.

Concept used :-

  • AM  ≥ GM
  • log1 = 0
  • log(ab) = loga + logb

Solution :-

\bf \:Let \: y = {a}^{logb - logc}   \times   {b}^{logc - loga}   \times   {c}^{loga - logb}

Taking log on both sides, we get

\bf \:logy =log( {a}^{logb - logc}   \times   {b}^{logc - loga}   \times   {c}^{loga - logb} )

⟹ logy = (logb - logc) × loga + (logc - loga) × logb + (loga - logb) × logc

⟹ logy = logb × loga - logc × loga + logc × logb - loga × logb + loga × logb - logb × logc

⟹ logy = 0

⟹ y = 1

\bf\implies \: {a}^{logb - logc}   \times   {b}^{logc - loga}   \times   {c}^{loga - logb}  = 1

Now, using AM  ≥  GM, we get

\bf \:\dfrac{{a}^{logb - logc}  +  {b}^{logc - loga}  +  {c}^{loga - logb} }{3}  ≥  {( {a}^{logb - logc}   \times   {b}^{logc - loga}   \times  {c}^{loga - logb}) }^{\dfrac{1}{3} }

\bf \:\dfrac{{a}^{logb - logc}  +  {b}^{logc - loga}  +  {c}^{loga - logb} }{3}  ≥ {(1)}^{\dfrac{1}{3} }

\bf \:\dfrac{{a}^{logb - logc}  +  {b}^{logc - loga}  +  {c}^{loga - logb} }{3}  ≥1

\bf ⟹\: {a}^{logb - logc}  +  {b}^{logc - loga}  +  {c}^{loga - logb}  ≥ 3

\bf\implies \:minimum \: value \: of \: E =3

Similar questions