Math, asked by Dharmansha, 2 months ago

6p-3q=1 , 5p+q=1 by substitution method ​

Answers

Answered by jagadishwar45
3

Answer:

p = 1/3, q = 1/3

Step-by-step explanation:

please drop some thanks for me

Answered by varadad25
0

Answer:

The solution of the given simultaneous equations is

\displaystyle{\boxed{\red{\sf\:(\:p\,,q\:)\:=\:\left(\:\dfrac{4}{21}\:,\:\dfrac{1}{21}\:\right)\:}}}

Step-by-step-explanation:

The given simultaneous equations are

6p - 3q = 1 - - - ( 1 ) &

5p + q = 1 - - - ( 2 )

Now,

5p + q = 1 - - - ( 2 )

q = 1 - 5p

By substituting this value in equation ( 1 ), we get,

6p - 3q = 1 - - - ( 1 )

⇒ 6p - 3 * ( 1 - 5p ) = 1

⇒ 6p - 3 + 15p = 1

⇒ 6p + 15p = 1 + 3

⇒ 21p = 4

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:p\:=\:\dfrac{4}{21}}}}}

By using the value of p,

q = 1 - 5p

\displaystyle{\implies\sf\:q\:=\:1\:-\:5\:\times\:\dfrac{4}{21}}

\displaystyle{\implies\sf\:q\:=\:1\:-\:\dfrac{20}{21}}

\displaystyle{\implies\sf\:q\:=\:\dfrac{21\:-\:20}{21}}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:q\:=\:\dfrac{1}{21}}}}}

∴ The solution of the given simultaneous equations is

\displaystyle{\boxed{\red{\sf\:(\:p\,,q\:)\:=\:\left(\:\dfrac{4}{21}\:,\:\dfrac{1}{21}\:\right)\:}}}

Similar questions