Math, asked by Prerna3287, 11 months ago

[(6x +1) ÷ 3] +1 = (x-3) ÷ 6 solve and check​

Answers

Answered by Anonymous
30

\huge\mathbb{SOLUTION}

\implies\sf \frac{(6x+1)}{3}+1=\frac{(x-3)}{6}

\implies\sf \frac{(6x+1)}{3}-\frac{(x-3)}{6}=-1

\implies\sf \frac{2(6x+1)-(x-3)}{6}=-1

\implies\sf \frac{12x+2-x+3}{6}=-1

\implies\sf \frac{11x+5}{6}=-1

\implies\sf 11x+5=-6

\implies\sf 11x=-11

\implies\sf x=\cancel\frac{-11}{11}=-1

Checking:-

Substitute the value of x

LHS

\implies\sf \frac{6x+1}{3}+1

\implies\sf \frac{6×(-1)+1}{3}+1

\implies\sf \frac{-5}{3}+1

\implies\sf \frac{-5+3}{3}

\implies\sf \frac{-2}{3}

RHS

\implies\sf \frac{(x-3)}{6}

\implies\sf \frac{(-1-3)}{6}

\implies\sf \cancel\frac{-4}{6}

\implies\sf \frac{-2}{3}

Hence, LHS = RHS checked

Answered by mddilshad11ab
7

\bold\orange{\underline{\underline{:SOLUTION:}}}

⟶(6x + 1) \div3 ) + 1 = (x - 3) \div 6 \\  \\ ⟶ \frac{6x + 1}{3}  + 1 =  \frac{x - 3}{6}  \\  \\ ⟶ \frac{6x + 1}{3}  -  \frac{x - 3}{6}  =  - 1 \\  \\ ⟶ \frac{12x + 2 - x + 3}{6}  =  - 1 \\  \\ ⟶ \frac{11x  + 5}{6}  =  - 1 \\  \\ ⟶11x + 5 =  - 6 \\  \\⟶11x =  - 6 - 5 \\  \\ ⟶11x =  - 11 \\  \\ ⟶x =  - 1

\bold\purple{\boxed{<em>VERI</em><em>FICATION</em>}}

  • here putting the value of X=-1

⟶ \frac{6x + 1}{3} + 1  =  \frac{x - 3}{6}  \\  \\ ⟶ \frac{6 \times ( - 1) + 1}{3}  + 1 =  \frac{ - 1 - 3}{6}  \\  \\ ⟶ \frac{ - 6  +  1}{3}  + 1 =  \frac{ - 4}{6}  \\  \\ ⟶ \frac{ - 5}{3}  + 1 =  \frac{ - 4}{6}  \\  \\ ⟶ \frac{ - 5 + 3}{3}  =  \frac{ - 4}{6}  \\  \\ ⟶ \frac{ - 2}{3}  =  \frac{ - 2}{3}

☆HENCE, VERIFIED☆

Similar questions