Math, asked by tayyib87, 5 months ago

6x^2+5x-6 factorise polynomial​

Answers

Answered by Anonymous
4

Solution:-

We have equation

 \rm \implies \: 6 {x}^{2}  + 5x - 6 = 0

Now Split into middle term

  \rm \implies \: 6 {x}^{2}  + 9x - 4x - 6 = 0

 \rm \implies \: 3x(2x + 3) - 2(2x + 3) = 0

 \rm \implies \: (3x - 2)(2x + 3) = 0

 \rm \implies \: 3x - 2 = 0 \:  \: and \:  \: 2x + 3 = 0

 \rm \implies \: 3x = 2 \:  \: and \: 2x =  - 3

 \rm \implies \: x =  \dfrac{2}{3}  \:  \: and \:  \: x =  \dfrac{ - 3}{2}

Method :-2

Using quadratic formula

We have

 \rm \implies \: 6 {x}^{2}  + 5x - 6 = 0

 \rm \implies \: a = 6,b = 5 \:  \: and \:  \: c =  - 6

Quadratic formula

 \rm \implies \: x =  \dfrac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}

Put the value on formula

 \rm \implies \: x =  \dfrac{ - 5 \pm \sqrt{ {5}^{2} - 4 \times 6 \times  - 6 } }{2 \times 6}

 \rm \implies \: x =  \dfrac{ - 5 \pm \sqrt{25  + 144} }{12}

 \rm \implies \: x =  \dfrac{ - 5 \pm \sqrt{169} }{12}

 \rm \implies \: x =  \dfrac{ - 5 \pm13}{12}

 \rm \implies \: x =  \dfrac{ - 5 + 13}{12}  \:  \: and \:  \dfrac{ - 5 - 13}{12}

 \rm \implies \: x =  \dfrac{8}{12}  \:  \: and \:  \dfrac{ - 18}{12}

 \rm \to \: x =  \dfrac{2}{3}  \:  \: and \:   \: \dfrac{ - 3}{2}


amansharma264: awesome
Similar questions