Math, asked by sumithrar4591, 1 year ago

√7+1/√7+1-√7+1/√7-1=a+b√7 find the value of a and b

Answers

Answered by jitumahi435
66

We have:

\dfrac{\sqrt{7}-1}{\sqrt{7}+1} -\dfrac{\sqrt{7}+1}{\sqrt{7}-1} = a + b\sqrt{7}

We have to find, the values of a and b are:

Solution:

\dfrac{\sqrt{7}-1}{\sqrt{7}+1} -\dfrac{\sqrt{7}+1}{\sqrt{7}-1} = a + b\sqrt{7}

Rationalising numerator and denominator, we get

\dfrac{\sqrt{7}-1}{\sqrt{7}+1}\times \dfrac{\sqrt{7}-1}{\sqrt{7}-1} -\dfrac{\sqrt{7}+1}{\sqrt{7}-1}\times \dfrac{\sqrt{7}+1}{\sqrt{7}+1} = a + b\sqrt{7}

Using the algebraic identity:

(a + b)(a - b) = a^{2} -b^{2}

\dfrac{(\sqrt{7}-1)^2}{\sqrt{7}^2-1^2} }-\dfrac{(\sqrt{7}+1)^2}{\sqrt{7}^2-1^2} = a + b\sqrt{7}

\dfrac{(\sqrt{7}-1)^2-(\sqrt{7}+1)^2}{\sqrt{7}^2-1^2} } = a + b\sqrt{7}

\dfrac{(\sqrt{7}-1)^2-(\sqrt{7}+1)^2}{6} } = a + b\sqrt{7}

Using the algebraic identity:

(a-b)^2 - (a+b)^2 = - 4ab

\dfrac{-4(\sqrt{7})(1)}{6} } = a + b\sqrt{7}

\dfrac{-2\sqrt{7}}{3} } = a + b\sqrt{7}

⇒ 0 + \sqrt{7} (\dfrac{-2}{3} }) = a + b\sqrt{7}        ......... (i)

Comparing both sides, we get

a = 0 and b = \dfrac{-2}{3}

a = 0 and b = \dfrac{-2}{3}

Thus, the values of a and b are "0 and \dfrac{-2}{3}".

Similar questions