Math, asked by josephbovas0404, 3 months ago


7 10 2
Find the sum of eigen values of A = 0 2 0
2 05​

Answers

Answered by rashmib825
0

Step-by-step explanation:

du

dt = 5u, u(0) = −3, (b)

du

dt = 2u, u(1) = 3, (c)

du

dt = −3u, u(−1) = 1.

Solution: (a) u(t) = −3e

5t

, (b) u(t) = 3e

2(t−1)

, (c) u(t) = e

−3(t+1)

.

8.1.2. Suppose a radioactive material has a half-life of 100 years. What is the decay rate γ?

Starting with an initial sample of 100 grams, how much will be left after 10 years? 100

years? 1, 000 years?

Solution: γ = log 2/100 ≈ 0.0069. After 10 years: 93.3033 gram; after 100 years 50 gram; after

1000 years 0.0977 gram.

8.1.3. Carbon-14 has a half-life of 5730 years. Human skeletal fragments discovered in a cave

are analyzed and found to have only 6.24% of the carbon-14 that living tissue would have.

How old are the remains?

Solution: Solve e

−(log 2)t/5730 = .0624 for t = −5730 log .0624/ log 2 = 22, 933 years.

8.1.4. Prove that if t

?

is the half-life of a radioactive material, then u(nt

?

) = 2

−n u(0). Ex-

plain the meaning of this equation in your own words.

Solution: By (8.6), u(t) = u(0) e

−(log 2)t/t?

= u(0) “

1

2

”t/t?

= 2

−n u(0) when t = nt

?

. After

every time period of duration t

?

, the amount of material is cut in half.

8.1.5. A bacteria colony grows according to the equation du/dt = 1.3 u. How long until the

colony doubles? quadruples? If the initial population is 2, how long until the population

reaches 2 million?

Solution: u(t) = u(0) e

1.3t

. To double, we need e

1.3t = 2, so t = log 2/1.3 = 0.5332. To

quadruple takes twice as long, t = 1.0664. To reach 2 million needs t = log 106

/1.3 = 10.6273.

8.1.6. Deer in Northern Minnesota reproduce according to the linear differential equation du

dt =

.27u where t is measured in years. If the initial population is u(0) = 5, 000 and the environ-

ment can sustain at most 1, 000, 000 deer, how long until the deer run out of resources?

Solution: The solution is u(t) = u(0) e

.27t

. For the given initial conditions, u(t) = 1, 000, 000

when t = log(1000000/5000)/.27 = 19.6234 years.

♦ 8.1.7. Consider the inhomogeneous differential equation du

dt = au + b, where a, b are constants.

(a) Show that u? = −b/a is a constant equilibrium solution. (b) Solve the differential

equation. Hint: Look at the differential equation satisfied by v = u − u?

. (c) Discuss the

stability of the equilibrium solution u?

.

Solution:

evv 9/9/04 415 °c 2004 Peter J. Olver

Similar questions