-7/10 परिमेय संख्या नहीं है क्यों?
Answers
Answer:
गणित] में, अपरिमेय संख्या (irrational number) वह वास्तविक संख्या है जो परिमेय नहीं है, अर्थात् जिसे भिन्न p /q के रूप में व्यक्त नहीं किया जा सकता है, जहां p और q पूर्णांक हैं, जिसमें q गैर-शून्य है और इसलिए परिमेय संख्या नहीं है।
Answer:
[गणित] में, अपरिमेय संख्या (irrational number) वह वास्तविक संख्या है जो परिमेय नहीं है, अर्थात् जिसे भिन्न p /q के रूप में व्यक्त नहीं किया जा सकता है, जहां p और q पूर्णांक हैं, जिसमें q गैर-शून्य है और इसलिए परिमेय संख्या नहीं है। अनौपचारिक रूप से, इसका मतलब है कि एक अपरिमेय संख्या को एक सरल भिन्न के रूप में प्रदर्शित नहीं किया जा सकता। उदाहरण के लिये २ का वर्गमूल, और पाई अपरिमेय संख्याएँ हैं।
यह साबित हो सकता है कि अपरिमेय संख्याएं विशिष्ट रूप से ऐसी वास्तविक संख्याएं हैं जिन्हें समापक या सतत दशमलव के रूप में नहीं दर्शाया जा सकता है, हालांकि गणितज्ञ इसे परिभाषा के रूप में नहीं लेते हैं। कैंटर प्रमाण के परिणामस्वरूप कि वास्तविक संख्याएं अगणनीय हैं (परिमेय गणनीय) यह मानता है कि लगभग सभी वास्तविक संख्याएं अपरिमेय हैं।[1] शायद, सर्वाधिक प्रसिद्ध अपरिमेय संख्याएं हैं π, e और √२.[2][3][4] जब दो रेखा खंडों की लंबाई का अनुपात अपरिमेय है, तो रेखा खण्डों को भी तारतम्यहीन के रूप में वर्णित किया जाता है, वे किसी माप को आम रूप से साझा नहीं करते. इस अर्थ में एक रेखा खंड l का माप एक रेखा खंड J है जिसका "माप" इस अर्थ में l है कि एक छोर से दूसरे छोर तक J की सभी प्रतियों की संख्या 1 के समान ही लंबाई हासिल करती है।
Step-by-step explanation: