Math, asked by sanskarkarale209, 5 months ago

7+√2/7-√2=a+b√2
value of a and b by rationalize method

Answers

Answered by TheMist
57

 \huge \sf \color{red}\underline{Answer :}

\large  \color{blue}\boxed{ a= \frac{51}{47}} , \boxed{b=\frac{14}{47}√2}

 \huge \sf \color{red}\underline{Solution :}

\large\frac{7+√2}{7-√2}×\frac{7+√2}{7+√2}\\\\ \large => \frac{49+2+14√2}{49-2}\\ \\ \large =>  \frac{51+14√2}{47} \\ \\  \large => \frac{51}{47} +\frac{14√2}{47}\\

\color{green}━━━━━━━━━━━━━━━━━━━━━━━━━

Hence,

 \sf \large \bf  \color{blue} a=\frac{51}{47} \ , \ b=\frac{14}{47}√2

\color{green}━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by Iriis
45

\huge\sf\color{red}\underline{Question}

7+\dfrac{√2}{7}-√2=a+b√2

\\

{\large{\underline{\underline{\bf{Answer}}}}}

a=\dfrac{51}{47}

b=\dfrac{14}{47}√2

\\

{\large{\underline{\underline{\bf{Solution}}}}}

\dfrac{7+√2}{7-√2}\dfrac{7+√2}{7+√2}

=> \dfrac{49+2+14√2}{49-2}

=> \dfrac{51}{47}+{14√2}{47}

\\

=>a=\dfrac{51}{47}, b=\dfrac{14}{47}√2

\\

Similar questions