Math, asked by krishnamante22, 9 months ago

(√7+√2)÷ 9+ 2√15 simplify by rationalising the denominator​

Answers

Answered by Anonymous
1

Answer:

 { \large \bold \orange{ \underline{answer =  \frac{9 \sqrt{5}  - 2 \sqrt{35}  + 9 \sqrt{2} - 2 \sqrt{10}  }{61} }}}

 \mathfrak{ \large \bold \green{ \underline{ \underline{question}}}} \\ { \large{\frac{ \sqrt{7}  +  \sqrt{2} }{9 + 2 \sqrt{5} }  \: \:  \: rationalising \: denominator}} \\  \\ { \large \bold \red{ \underline{solution}}} \\ { \large{{\frac{ \sqrt{7}  +  \sqrt{2} }{9 + 2 \sqrt{5}}}}} \times { \large{ \frac{9 - 2 \sqrt{5} }{9 -  2\sqrt{5} } }} \\ { \large{ \frac{( \sqrt{7}  +  \sqrt{2} )(9 - 2 \sqrt{5} )}{( {9})^{2}  - (2 \sqrt{5} ) {}^{2} } }} \\ { \large{ \frac{9 \sqrt{5}  - 2 \sqrt{35} + 9 \sqrt{2}   - 2 \sqrt{10} }{81 - 20} }} \\ { \large{ \frac{9 \sqrt{5}  - 2 \sqrt{35}  + 9 \sqrt{2}  - 2 \sqrt{10} }{61} }} \\  \\ { \large \bold \orange{ \underline{answer =  \frac{9 \sqrt{5}  - 2 \sqrt{35}  + 9 \sqrt{2} - 2 \sqrt{10}  }{61} }}}

Similar questions
Math, 4 months ago