Math, asked by mhdyusufali, 3 months ago

7/2 x + 2 =x

Find the value of x​

Answers

Answered by sam28081
2

Answer:

x = -4/5

Step-by-step explanation:

7/2x + 2 = x

7x / 2 + 2 = x

7x/2 + 2 - 2 = x - 2

7x / 2 = x - 2

7x / 2 - x = x - 2 - x

7x / 2 - x = - 2

2( 7x /2 - x) = 2 (-2)

7x + 2 (-x) = 2(-2)

7x - 2x = 2(-2)

5x = 2(-2)

5x = -4

x = -4/5

Answered by Anonymous
183

Need To Find :-

  • Value of "x"

Solution :-

\sf \pink {:\implies \:\dfrac{7}{2} \sqrt{x}   + 2 = x}\\\\

\sf :\implies \:7 \sqrt{x} + 4 = 2x\\\\

\sf :\implies\:2x - 7 \sqrt{x}  - 4 = 0\\\\

\sf :\implies\:2 {( \sqrt{x}) }^{2}  - 7 \sqrt{x}  - 4 = 0\\\\

\sf :\implies\:2 {( \sqrt{x}) }^{2}  - 8 \sqrt{x}  +  \sqrt{x}  - 4 = 0\\\\

\sf :\implies\:2 \sqrt{x}( \sqrt{x} - 4) + 1( \sqrt{x} - 4) = 0 \\\\

\sf :\implies\:( \sqrt{x} - 4)(2 \sqrt{x} + 1) = 0\\\\

\sf \pink{:\implies\: \sqrt{x} = 4 \:  \:  \: or \:  \:  \:  \sqrt{x} =  - \dfrac{1}{2}  } \\\\

\begin{array}{c|c}\sf :\implies \sqrt{x} =4&\sf:\implies \sqrt{x} =- \dfrac{1}{2}  \\\\\sf :\implies x={4}^2&\sf:\implies  x={(- \dfrac{1}{2})}^2 \\\\\sf \red {:\implies \boxed{\sf x=16}}&\sf \red {:\implies \boxed{\sf x=\dfrac{1}{4}}}\end{array}\\\\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace\red{{ \boxed{ \sf{Value \: of \: x   = 16\: Or\:   \dfrac{1}{4}  }}}}

Similar questions