Math, asked by tejaswinijawale19, 1 month ago

7/2x+1 +13/y+2=27; 13/2x+1 + 7/y+2=33 sol it ​

Answers

Answered by samson283
1

To solve:

                \frac{7}{2x} +1+\frac{13}{y}+2=27

                \frac{13}{2x} +1+\frac{7}{y} +2=33

solution:

               \frac{7}{2x} +1+\frac{13}{y}+2=27

                \frac{13}{2x} +1+\frac{7}{y} +2=33

assume,

let '\frac{1}{2x} ' be a

let '\frac{1}{y}'be b

{7}{a} +1+{13}{b}+2=27

{7}{a} +{13}{b}=30_____(i)

{13}a +1+{7}{b} +2=33

{13}a +{7}{b} =36_____(ii)

from subtracting (i) and (ii)

{7}{a} +{13}{b}=30

{13}a +{7}{b} =36

___________

-6a+6b=-6

-6(a-b)=-6\\

a-b=1

a=1+b______(iii)

substitute (iii) in (i)

7(1-b)+13b=30

7-7b+13b=30\\7+6b=30\\6b=23\\b=\frac{23}{6}_(iv)

substitute (iv) in (ii)

{13}a +{7}({\frac{23}{6}) } =36

13a+\frac{161}{6} =36\\\\\frac{78a+161}{6} =36

{78a+161} =216

78a=216-161\\78a=55\\a=\frac{55}{78}

as per our assumption '\frac{1}{2x} '=a  and '\frac{1}{y}'=b

\frac{1}{2x}=\frac{55}{78}                          

110x=78\\x=\frac{78}{110} \\\\x=\frac{39}{55}

\frac{1}{y} =\frac{23}{6} \\\\23y=6\\y=\frac{6}{23}

Answer:   x=\frac{39}{55}   ;   y=\frac{23}{6}

               

Similar questions