Math, asked by vijayshrinidi12007, 4 months ago

(7√3/√10+√3)-(2√5/√6+√5)-(3√2/√15+3√2). Simplify

Answers

Answered by IntrovertLeo
8

Given:

The expression -

\bf \longmapsto \: \dfrac{7\sqrt{3}}{\sqrt{10}+\sqrt{3}} -\dfrac{2\sqrt{5}}{\sqrt{6}+\sqrt{5}} - \dfrac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}}

What To Find:

We have to -

  • Simplify the expression.

Solution:

\sf \longmapsto \: \dfrac{7\sqrt{3}}{\sqrt{10}+\sqrt{3}} -\dfrac{2\sqrt{5}}{\sqrt{6}+\sqrt{5}} - \dfrac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}}

  • Rationalising the denominator of -

\sf \longmapsto \: \dfrac{7\sqrt{3}}{\sqrt{10}+\sqrt{3}}

Here the conjugate of the denominator is -

\sf \longmapsto \: \sqrt{10} - \sqrt{3}

Multiply it with the expression,

\sf \longmapsto \: \dfrac{7\sqrt{3}}{\sqrt{10}+\sqrt{3}} \times \dfrac{\sqrt{10}-\sqrt{3}}{\sqrt{10}-\sqrt{3}}

Take them as common,

\sf \longmapsto \: \dfrac{7\sqrt{3} \times \sqrt{10}-\sqrt{3}}{\sqrt{10}+\sqrt{3} \times \sqrt{10}-\sqrt{3}}

Solve the numerator,

\sf \longmapsto \: \dfrac{7\sqrt{30}-21}{\sqrt{10}+\sqrt{3} \times \sqrt{10}-\sqrt{3}}

Solve the denominator using the identity - (a + b) (a - b) = a² - b²,

\sf \longmapsto \: \dfrac{7\sqrt{30}-21}{(\sqrt{10})^2-(\sqrt{3})^2}

Find the squares,

\sf \longmapsto \: \dfrac{7\sqrt{30}-21}{10-3}

Subtract 3 from 10,

\sf \longmapsto \: \dfrac{7\sqrt{30}-21}{7}

Take 7 as a common factor,

\sf \longmapsto \: \dfrac{7(\sqrt{30}-3)}{7}

Cancel 7,

\sf \longmapsto \: \sqrt{30}-3

  • Rationalising the denominator of -

\sf \longmapsto \: \dfrac{2\sqrt{5}}{\sqrt{6}+\sqrt{5}}

Here the conjugate of the denominator is -

\sf \longmapsto \: \sqrt{6} - \sqrt{5}

Multiply it with the expression,

\sf \longmapsto \: \dfrac{2\sqrt{5}}{\sqrt{6}+\sqrt{5}} \times \dfrac{\sqrt{6}-\sqrt{5}}{\sqrt{6}-\sqrt{5}}

Take them as common,

\sf \longmapsto \: \dfrac{2\sqrt{5} \times \sqrt{6}-\sqrt{5}}{\sqrt{6}+\sqrt{5} \times \sqrt{6}-\sqrt{5}}

Solve the numerator,

\sf \longmapsto \: \dfrac{2\sqrt{30}-10}{\sqrt{6}+\sqrt{5} \times \sqrt{6}-\sqrt{5}}

Solve the denominator using the identity - (a + b) (a - b) = a² - b²,

\sf \longmapsto \: \dfrac{2\sqrt{30}-10}{(\sqrt{6})^2-(\sqrt{5})^2}

Find the squares,

\sf \longmapsto \: \dfrac{2\sqrt{30}-10}{6 - 5}

Subtract 5 from 6,

\sf \longmapsto \: \dfrac{2\sqrt{30}-10}{1}

Can be written as,

\sf \longmapsto \: 2\sqrt{30}-10

  • Rationalising the denominator of -

\sf \longmapsto \: \dfrac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}}

Here the conjugate of the denominator is -

\sf \longmapsto \: \sqrt{15} - 3\sqrt{2}

Multiply it with the expression,

\sf \longmapsto \: \dfrac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}} \times \dfrac{\sqrt{15}-3\sqrt{2}}{\sqrt{15}-3\sqrt{2}}

Take them as common,

\sf \longmapsto \: \dfrac{3\sqrt{2} \times \sqrt{15}-3\sqrt{2}}{\sqrt{15}+3\sqrt{2} \times \sqrt{15}-3\sqrt{2}}

Solve the numerator,

\sf \longmapsto \: \dfrac{3\sqrt{30} - 18}{\sqrt{15}+3\sqrt{2} \times \sqrt{15}-3\sqrt{2}}

Solve the denominator using the identity - (a + b) (a - b) = a² - b²,

\sf \longmapsto \: \dfrac{3\sqrt{30} - 18}{(\sqrt{15})^2-(3\sqrt{2})^2}

Find the squares,

\sf \longmapsto \: \dfrac{3\sqrt{30} - 18}{15-18}

Subtract 18 from 15,

\sf \longmapsto \: \dfrac{3\sqrt{30} - 18}{-3}

Also written as,

\sf \longmapsto \: -\dfrac{3\sqrt{30} - 18}{3}

Take 3 as a common factor,

\sf \longmapsto \: -\dfrac{3(\sqrt{30} -6)}{3}

Cancel 3,

\sf \longmapsto \: -(\sqrt{30} -6)

Remove the brackets,

\sf \longmapsto \: 6 - \sqrt{30}

  • Simplifying the expression -

\sf \longmapsto \: \dfrac{7\sqrt{3}}{\sqrt{10}+\sqrt{3}} -\dfrac{2\sqrt{5}}{\sqrt{6}+\sqrt{5}} - \dfrac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}}

After rationalising each term,

\sf \longmapsto \: (\sqrt{30}-3) - (2\sqrt{30}-10) - (6-\sqrt{30})

Remove the brackets,

\sf \longmapsto \: \sqrt{30}-3 - 2\sqrt{30}+10 - 6+\sqrt{30}

Rearrange the terms,

\sf \longmapsto \: \underline{\sqrt{30} +\sqrt{30}- 2\sqrt{30}} \:\: \underline{- 3 + 10 - 6}

Solve the first term,

\sf \longmapsto \: 2\sqrt{30}- 2\sqrt{30} \:\: \underline{- 3 + 10 - 6}

Further, solve the first term,

\sf \longmapsto \: \underline{- 3 + 10 - 6}

Solve the second term,

\sf \longmapsto \: 7 - 6

Further, solve the second term,

\sf \longmapsto \: 1

Final Answer:

∴ Thus, the answer is 1 after simplifying the expression.

Similar questions