Math, asked by shivamdoshi0404, 1 month ago

7√3-5√2÷√48+√18 rationaise the denominator​

Answers

Answered by sreekaraitha0786
0

Answer:

Refer the above pic for answer

Attachments:
Answered by Yugant1913
10

\huge\boxed{\underline{\bf { \red S \green o \pink L \blue u \orange T \purple i\red O \pink n \green{..}}}}\\

Step-by-step explanation:

\huge\boxed{{\bf { \ given   \:  \:  \: \frac{(7 \sqrt{3} - 5 \sqrt{2} ) }{( \sqrt{48} +  \sqrt{18}  }  }}}\\

\huge\boxed{{\bf { =  \frac{(7 \sqrt{3}  - 5 \sqrt{2}) }{( \sqrt{4}  \times 4 \times 3 \times  \sqrt{3}  \times 3 \times 2} }}}\\

\huge\boxed{{\bf { =  \frac{(7 \sqrt{3}  - 5 \sqrt{2} }{(4 \sqrt{3}  + 3 \sqrt{2} }  }}}\\

\huge\boxed{{\bf {Multiplying \:  \:  numerator  \:  \: and \:  \:  denominator \:  \:  by \:  \: (4 \sqrt{3}  - 3 \sqrt{2} ) \: we \: get  }}}\\

 \huge\boxed{{\bf { =  \frac{(7 \sqrt{3 }  - 5 \sqrt{2} )(4 \sqrt{3} - 3 \sqrt{2}  }{(4 \sqrt{3} + 3 \sqrt{2}  )(4 \sqrt{3} - 3 \sqrt{2}  )}  }}}\\

\huge\boxed{{\bf {  =  \frac{28 \times 3 - 21 \sqrt{6}  - 20 \sqrt{6}  + 15 \times 2}{(4  { \sqrt{3} )}^{2}  -  {(3 \sqrt{2} )}^{2} } }}}\\

\huge\boxed{{\bf { =  \frac{84 - 41 \sqrt{6} + 30 }{48 - 18}  }}}\\

\huge\boxed{{\bf {  =  \frac{114 - 41 \sqrt{6} }{30} }}}\\

\huge\boxed{{\bf {Denominator  \:  \: rationalised  }}}\\

\huge\boxed{{\bf { Therefore, }}}\\

\huge\boxed{{\bf {  \frac{(7 \sqrt{3}  - 5 \sqrt{2}) }{ (\sqrt{48} +  \sqrt{18} ) } }}}\\

\huge\boxed{{\bf {  =  \frac{114 - 41 \sqrt{6} }{30} }}}\\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \huge\boxed{{\bf  { answer}}}\\ \\

Similar questions