Math, asked by hiiAkansha1, 1 year ago

7√3 -5√2 upon √48+ √18.... simplify by rationalising the denominator

Attachments:

Answers

Answered by mysticd
179

Answer:

  \frac{(7\sqrt{3}-5\sqrt{2})}{(\sqrt{48}+\sqrt{18})}\\=\frac{114-41\sqrt{6}}{30}

Step-by-step explanation:

 Given \: \frac{(7\sqrt{3}-5\sqrt{2})}{(\sqrt{48}+\sqrt{18})}

=\frac{(7\sqrt{3}-5\sqrt{2})}{(\sqrt{4\times 4\times 3}+\sqrt{3\times 3\times 2})}

=\frac{(7\sqrt{3}-5\sqrt{2})}{(4\sqrt{3}+3\sqrt{2})}

/* Multiply numerator and denominator by (4\sqrt{3}-3\sqrt{2}), we get

=\frac{(7\sqrt{3}-5\sqrt{2})(4\sqrt{3}-3\sqrt{2})}{(4\sqrt{3}+3\sqrt{2})(4\sqrt{3}-3\sqrt{2})}

=\frac{28\times 3-21\sqrt{6}-20\sqrt{6}+15\times 2}{(4\sqrt{3})^{2}-(3\sqrt{2})^{2}}

=\frac{84-41\sqrt{6}+30}{48-18}

=\frac{114-41\sqrt{6}}{30}

/* Denominator rationalised .

Therefore,

  \frac{(7\sqrt{3}-5\sqrt{2})}{(\sqrt{48}+\sqrt{18})}\\=\frac{114-41\sqrt{6}}{30}

•••♪

Answered by ararenuray
19

Answer:

114-41✓6/30

I hope I help your

Attachments:
Similar questions