Math, asked by SumitraNandanSingh, 1 year ago

7+3✓5/3+✓5-7-3✓5/3-✓5=a+✓5b find the value of a and b

Answers

Answered by mgo
1
answer is 36÷77×457+567=4680
Answered by Anonymous
39

Answer:

a = 0 and b = 1

Step-by-step explanation:

We have ,

 =  >  \frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -  \frac{7 - 3 \sqrt{5} }{3 -  \sqrt{5} }

 =  > ( \frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  \times  \frac{3 -  \sqrt{5} }{3 -  \sqrt{5} } ) - ( \frac{7 - 3 \sqrt{5} }{3 -  \sqrt{5} }  \times  \frac{3 +  \sqrt{5} }{3 +  \sqrt{5} } )

 =  >  \frac{(21 + 7 \sqrt{5}  + 9 \sqrt{5}  - 15)}{(3 +  \sqrt{5})(3 -  \sqrt{5} ) }  -  \frac{(21 + 7 \sqrt{5}  - 9 \sqrt{5}  - 15)}{(3 -  \sqrt{5} )(3 +  \sqrt{5} )}

 =  >  \frac{(6 + 2 \sqrt{5} )}{(3) ^{2}  - ( \sqrt{5})^{2}  }  -  \frac{(6 - 2 \sqrt{5}) }{(3)^{2} - ( \sqrt{5}) ^{2}   }

 =  >  \frac{(6 + 2 \sqrt{5} )}{(3) ^{2}  - ( \sqrt{5})^{2}  }  -  \frac{(6 - 2 \sqrt{5}) }{(3)^{2} - ( \sqrt{5}) ^{2}   }

 =  >  \frac{(6  + 2 \sqrt{5} )}{(9 - 5)}  -  \frac{(6 - 2 \sqrt{5} )}{(9 - 5)}

 =  >  \frac{6 + 2 \sqrt{5} }{4}  -  \frac{6 - 2 \sqrt{5} }{4}

 =  >  \frac{6 + 2 \sqrt{5} - 6 - 2 \sqrt{5}  }{4}

 =  >  \frac{4 \sqrt{5} }{4}  =  \sqrt{5}

∴ 7 + 3√5 / 3 + √5 - 7 - 3√5 /3 - √5 = a + √5 b

Comparing on both the sides , we get ;

⇒ √5 = a + √5 b

⇒ a = 0 and b = 1

Similar questions