Math, asked by shreyajachakraborty, 3 months ago

7+√3/7-√3
simplify

Answers

Answered by vs98765432
3

Answer:

i hope it's help you

Step-by-step explanation:

\huge\bold\red{Hey!}Hey!

\begin{gathered} \frac{(7 + \sqrt{3} )}{(7 - \sqrt{3}) } \\ \frac{(7 + \sqrt{3} )}{(7 - \sqrt{3}) } \times \frac{(7 + \sqrt{3}) }{(7 + \sqrt{3} )} \\ \frac{ {(7 + \sqrt{3}) }^{2} }{ {7}^{2} - { \sqrt{3} }^{2} } \\ \ \frac{49 + 3 + 14 \sqrt{3} }{4} \\ \frac{52 + 14 \sqrt{3} }{4} \\ 13 + \frac{7}{2} \sqrt{3} \end{gathered}

(7−

3

)

(7+

3

)

(7−

3

)

(7+

3

)

×

(7+

3

)

(7+

3

)

7

2

3

2

(7+

3

)

2

4

49+3+14

3

4

52+14

3

13+

2

7

3

Answered by lalityamarathe12
1

Answer:

 \frac{26 + 7 \sqrt{3} }{23}

Step-by-step explanation:

 \frac{7 +  \sqrt{3} }{7 -  \sqrt{3} }  \\  =  \frac{(7 +  \sqrt{3})(7  +  \sqrt{3})  }{(7 +  \sqrt{3})(7 -  \sqrt{3} ) }  \\  =  \frac{49 + 14 \sqrt{3} + 3 }{49 - 3}  \\  =  \frac{52 + 14 \sqrt{3} }{46}  \\  =  \frac{26 + 7 \sqrt{3} }{23}

Similar questions