Math, asked by birvakhamar1234, 1 year ago

7 + 3 root 3 upon 3 + root 5 minus 7 minus 3 root 5 upon 3 minus root 5

Answers

Answered by SarthakBansal
40
it will help you!!!!!¡!!!!!
Attachments:
Answered by aquialaska
4

Answer:

\frac{7+3\sqrt{5}}{3+\sqrt{5}}-\frac{7-3\sqrt{5}}{3-\sqrt{5}}=\sqrt{5}

Step-by-step explanation:

Given: \frac{7+3\sqrt{5}}{3+\sqrt{5}}-\frac{7-3\sqrt{5}}{3-\sqrt{5}}

We need to simplify the Given Expression.

We use rationalization of denominator to simply the given expression.

\frac{7+3\sqrt{5}}{3+\sqrt{5}}-\frac{7-3\sqrt{5}}{3-\sqrt{5}}

=\frac{7+3\sqrt{5}}{3+\sqrt{5}}\times\frac{3-\sqrt{5}}{3-\sqrt{5}}-\frac{7-3\sqrt{5}}{3-\sqrt{5}}\times\frac{3+\sqrt{5}}{3+\sqrt{5}}

=\frac{(7+3\sqrt{5})(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})}-\frac{(7-3\sqrt{5})(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})}

=\frac{21+9\sqrt{5}-7\sqrt{5}-3(5)}{(3)^2-(\sqrt{5})^2}-\frac{21+7\sqrt{5}-9\sqrt{5}-3(5)}{(3)^2-(\sqrt{5})^2}

=\frac{6+2\sqrt{5}}{9-5}-\frac{6-2\sqrt{5}}{9-5}

=\frac{6+2\sqrt{5}-(6-2\sqrt{5})}{4}

=\frac{6+2\sqrt{5}-6+2\sqrt{5}}{4}

=\frac{4\sqrt{5}}{4}

=\sqrt{5}

Therefore, \frac{7+3\sqrt{5}}{3+\sqrt{5}}-\frac{7-3\sqrt{5}}{3-\sqrt{5}}=\sqrt{5}

Similar questions