Math, asked by sreyan11, 1 year ago

7+3
 < 7 + 3 \sqrt{5} >   \div  < 3 +  \sqrt{5}   >  - < 7 - 3 \sqrt{5}  >  \div  < \ 3 -  \sqrt{5} >

Answers

Answered by rahman786khalilu
6

Answer:

√5

Step-by-step explanation:

hope it helps you ! mark as brainliest

Attachments:
Answered by LovelyG
8

Answer:

\large{\red{\boxed{\sf \frac{7 + 3 \sqrt{5} }{3  +  \sqrt{5}}  -  \frac{7 - 3 \sqrt{5} }{3 -  \sqrt{5} }    =  \sqrt{5}}}}

Step-by-step explanation:

Given that ;

 \dfrac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  -  \dfrac{7 - 3 \sqrt{5} }{3 -  \sqrt{5} }

Let a = \sf \dfrac{7 + 3\sqrt{5}}{3 + \sqrt{5}} and,

b = \sf \dfrac{7 - 3\sqrt{5}}{3 - \sqrt{5}}

We need to find, (a - b) -

Consider a;

 \frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  \\  \\ \implies  \frac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  \times  \frac{3 -  \sqrt{5} }{3 -  \sqrt{5} }   \\  \\ \implies  \frac{(7 + 3 \sqrt{5} )(3 -  \sqrt{5} )}{(3) {}^{2}  - ( \sqrt{5}) {}^{2}  } \\  \\ \implies  \frac{35 + 9 \sqrt{5}  - 7 \sqrt{5} - 15 }{9 - 5}   \\  \\ \implies  \frac{20 + 2 \sqrt{5} }{4} \\  \\ \implies  \frac{2(10 +  \sqrt{5}) }{4}\\  \\ \implies  \frac{10 +  \sqrt{5} }{2}

Consider b;

 \frac{7 - 3 \sqrt{5} }{3 -  \sqrt{5} }    \\  \\ \implies  \frac{7 - 3 \sqrt{5} }{3 -  \sqrt{5} }  \times  \frac{3 +  \sqrt{5} }{3 +  \sqrt{5} } \\  \\ \implies  \frac{(7 - 3 \sqrt{5})(3 +  \sqrt{5})}{(3) {}^{2} - ( \sqrt{5}) {}^{2}  }   \\  \\ \implies  \frac{35 + 7 \sqrt{5}  - 9 \sqrt{5}  - 15}{9 - 5} \\  \\ \implies  \frac{20 - 2 \sqrt{5} }{4}    \\  \\ \implies  \frac{2(10 -  \sqrt{5}) }{4}  \\  \\  \implies  \frac{10 -  \sqrt{5} }{2}

Now, find (a - b) -

\implies  \frac{10 +  \sqrt{5} }{2}  -  \frac{10 -  \sqrt{5} }{2}   \\  \\ \implies  \frac{10 +  \sqrt{5}  - (10 -  \sqrt{5}) }{2}  \\  \\ \implies  \frac{10 +  \sqrt{5} - 10 +  \sqrt{5}  }{2}    \\  \\ \implies  \frac{2 \sqrt{5}}{ 2}  \\   \\ \boxed{ \bf \therefore \:  \frac{7 + 3 \sqrt{5} }{3  +  \sqrt{5}}  -  \frac{7 - 3 \sqrt{5} }{3 -  \sqrt{5} }    =  \sqrt{5} }

Similar questions