7.3 Using appropriate identities, find the value of: a) (a+b)(a+b)*(a-b)(a-b)
Answers
Answer:
2( b× a) is correct answer please Mark me brilliant
Suppose a + b = k & ab = n.
Suppose a + b = k & ab = n.So, b = k-a.
Suppose a + b = k & ab = n.So, b = k-a.Putting b = (k-a) in ab = n,
Suppose a + b = k & ab = n.So, b = k-a.Putting b = (k-a) in ab = n,a (k-a) = n.
Suppose a + b = k & ab = n.So, b = k-a.Putting b = (k-a) in ab = n,a (k-a) = n.ka - a^2 - n =-0.
Suppose a + b = k & ab = n.So, b = k-a.Putting b = (k-a) in ab = n,a (k-a) = n.ka - a^2 - n =-0.a^2 - ka + n = 0.
Suppose a + b = k & ab = n.So, b = k-a.Putting b = (k-a) in ab = n,a (k-a) = n.ka - a^2 - n =-0.a^2 - ka + n = 0.Use the quadratic formula to get the values of 'a' in terms of k & n. Put them in the original equation to get the values of b. You'll get 2 ordered pairs with values interchanged.
Suppose a + b = k & ab = n.So, b = k-a.Putting b = (k-a) in ab = n,a (k-a) = n.ka - a^2 - n =-0.a^2 - ka + n = 0.Use the quadratic formula to get the values of 'a' in terms of k & n. Put them in the original equation to get the values of b. You'll get 2 ordered pairs with values interchanged.E.g. a + b = 5 & ab = 6.
Suppose a + b = k & ab = n.So, b = k-a.Putting b = (k-a) in ab = n,a (k-a) = n.ka - a^2 - n =-0.a^2 - ka + n = 0.Use the quadratic formula to get the values of 'a' in terms of k & n. Put them in the original equation to get the values of b. You'll get 2 ordered pairs with values interchanged.E.g. a + b = 5 & ab = 6.If you solve it following this given procedure, you get :
Suppose a + b = k & ab = n.So, b = k-a.Putting b = (k-a) in ab = n,a (k-a) = n.ka - a^2 - n =-0.a^2 - ka + n = 0.Use the quadratic formula to get the values of 'a' in terms of k & n. Put them in the original equation to get the values of b. You'll get 2 ordered pairs with values interchanged.E.g. a + b = 5 & ab = 6.If you solve it following this given procedure, you get :(a,b) = (2,3), (3,2).