Math, asked by hardiknarain1023, 9 months ago

7*3^(x+1)-5^(x+2)=3^(x+4)-5^(x+3)

Answers

Answered by Darkrai14
3

\rm 7 \times 3^{x+1} - 5^{x+2} = 3^{x+4} - 5^{x+3}

\rm\implies 7 \times 3^{x+1} - 5^{x+1}\times 5 = 3^{x+1} \times 3^3- 5^{x+1}\times 5^2 \qquad ...[since , \ a^{m+n} = a^m \times a^n]

\implies\rm 7 \times 3^{x+1} - 5^{x+1}\times 5 = 3^{x+1} \times 27- 5^{x+1}\times 25

Let \rm 3^{x+1} = a \ and \ 5^{x+1} = b

\rm\implies 7 \times a - b \times 5 = a\times 27- b\times 25

\rm\implies 7a - 5b =  27a- 25b

\rm\implies 25b - 5b =  27a- 7a

\rm\implies 20b =  20a

\rm\implies b =  a

Substituting the values we get,

\rm\implies 5^{x+1} =  3^{x+1}

\rm\implies 5^x \times 5=  3^{x} \times 3

\rm\implies 5^x =  \dfrac{3^{x} \times 3}{5}

\rm\implies \dfrac{5^x}{3^x} =  \dfrac{3}{5}

\rm\implies\Bigg ( \dfrac{5}{3} \Bigg )^x=  \Bigg (\dfrac{5}{3}\Bigg )^{-1}

Comparing the powers, we get,

\boxed{\bf x=-1}

Hope it helps...

Similar questions