Math, asked by rahul271106, 1 month ago

(7 + 3sqrt(5))/(3 + sqrt(5)) - (7 - 3sqrt(5))/(3 - sqrt(5)) = a + b * sqrt(5)​

Answers

Answered by vipinkumar212003
45

HOPE THIS HELPS

MARK ME BRAINLIEST

Attachments:
Answered by varshamittal029
46

Concept:

Irrational numbers are created when a radical contains an expression that is not a perfect root. So, in order to rationalize the denominator, all radicals in the denominator must be removed.

Given:

The given equation is \frac{7+3\sqrt{5} }{3+\sqrt{5} } -\frac{7-3\sqrt{5} }{3-\sqrt{5} }=a+b\sqrt{5}.

Find:

Find the values of a and b.

Solution:

\frac{7+3\sqrt{5} }{3+\sqrt{5} } -\frac{7-3\sqrt{5} }{3-\sqrt{5} }=a+b\sqrt{5}\\

Rationalize the denominator

\frac{7+3\sqrt{5}}{3+\sqrt{5}}*\frac{3-\sqrt{5}}{3-\sqrt{5}}-[\frac{7-3\sqrt{5}}{3-\sqrt{5}} *\frac{3+\sqrt{5}}{3+\sqrt{5}}]=a+b\sqrt{5}

Simplify further

\frac{21-7\sqrt{5}+9\sqrt{5}-15}{9-5}-[\frac{21+7\sqrt{5}-9\sqrt{5}-15}{9-5}]=a+b\sqrt{5}

( ∵ (a+b)(a-b)=a^{2} -b^{2} )

\frac{6+2\sqrt{5}}{4} -[\frac{6-2\sqrt{5}}{4}]=a+b\sqrt{5}

\frac{6+2\sqrt{5}-6+2\sqrt{5}}{4}=a+b\sqrt{5}

\frac{4\sqrt{5}}{4} =a+b\sqrt{5}

\sqrt{5}=a+b\sqrt{5}

Or

0+1\sqrt{5}=a+b\sqrt{5}

Equating both sides of the equation

a=0\\b=1

Hence the values of a and b are 0 and 1.

Similar questions