Math, asked by aditya703570, 1 year ago

7-4√3/7+4√3=a+b√3 what is ans


aditya703570: plzz answere the question

Answers

Answered by lakshitapanchal04
1

Answer:

(7-4√3)/(7+4√3)*(7-4√3)/(7-4√3)= a+b√3

(7)²+2(7)(4√3)+(4√3)²/(7)²-(4√3)²= a+b√3

49+56√3+48/49-48= a+b√3

97+56√3/1=a+b√3

so, a= 97&

b√3=56√3

hope this helps you!!!plz mark me as brainliest.



aditya703570: thaxx bro tommaro is my exam
aditya703570: nd u help me
lakshitapanchal04: what?
lakshitapanchal04: Wlcm
Answered by Anonymous
0

 \large  \rm{ \frac{7 - 4 \sqrt{3} }{7 + 4 \sqrt{3} } = a + b \sqrt{3}  }

 \sf{rationalise \: the \: denominator}

 \implies  \large \rm{ \frac{7 - 4 \sqrt{3} }{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} } = a + b \sqrt{3}  }

 \implies  \large \rm{ \frac{{(7 - 4 \sqrt{3})}^{2}  }{ {7}^{2}  -  {(4 \sqrt{3})}^{2}  } = a + b \sqrt{3}  }

 \star \:  \sf{note:{(4 \sqrt{3})}^{2}    =  {4}^{2}  \times  {  \sqrt{3}  }^{2} } \\  \rightarrow16 \times 3 = 48 \\ \sf{expand \:  {(7 - 4 \sqrt{3} )}^{2} } \: using \: formula \:   {(a - b)}^{2}

 \implies  \large \rm{ \frac{{{7}^{2}  - 2(7)(4 \sqrt{3} ) + (4 \sqrt{3})}^{2}  }{ 49  - 48  } = a + b \sqrt{3}  }

\implies  \large \rm{ \frac{49- 56\sqrt{3}  + 48  }{ 49  - 48  } = a + b \sqrt{3}  }

\implies  \large \rm{ 97- 56\sqrt{3}   = a + b \sqrt{3}  }

 \large \star \: { \rm{a = 97}}

\large \star \: { \rm{b = 56  }}

Similar questions