Math, asked by anishbiswas90974, 3 months ago

✓7(✓5 - ✓2) - ✓5(✓7 - ✓2) + 2✓2 /✓5 +✓7​

Answers

Answered by bhuvanarsk73
2

Answer:

I think this is the answer please do confirm the answer from external sources.

Attachments:
Answered by Flaunt
24

  \sf=  >  \sqrt{7} ( \sqrt{5}  -  \sqrt{2} ) -  \sqrt{5} ( \sqrt{7}  -  \sqrt{2} ) +  \frac{2 \sqrt{2} }{ \sqrt{5} +  \sqrt{7}  }

  \sf=  >  \sqrt{7}  \sqrt{5}  -  \sqrt{2}  \sqrt{7}  -  \sqrt{5}  \sqrt{7}  +  \sqrt{5}  \sqrt{2}  +  \frac{2 \sqrt{2} }{ \sqrt{5}  +  \sqrt{7} }

  \sf=  >  \frac{( \sqrt{5}  +  \sqrt{7})( \sqrt{7}  \sqrt{5}   -  \sqrt{2}  \sqrt{7}) - ( \sqrt{5}  +  \sqrt{7})( \sqrt{5}  \sqrt{7}   +  \sqrt{5}  \sqrt{2} ) + 2 \sqrt{2}  }{ \sqrt{5}  +  \sqrt{7} }

  \sf=  >  \frac{( \sqrt{5} +  \sqrt{7} )( \sqrt{35}   -  \sqrt{14} ) - ( \sqrt{5}  +  \sqrt{7} )( \sqrt{35} +  \sqrt{10}) + 2 \sqrt{2}   }{ \sqrt{5} +  \sqrt{7}  }

  \sf=  >  \frac{ \sqrt{5} ( \sqrt{35} -  \sqrt{14} ) +  \sqrt{7}  ( \sqrt{35}  -  \sqrt{14} ) -  \sqrt{5} ( \sqrt{35}  +  \sqrt{10}) +  \sqrt{7} ( \sqrt{35}   +  \sqrt{10} ) + 2 \sqrt{2} }{ \sqrt{5}  +  \sqrt{7} }

  \sf=  >  \frac{ \cancel{{ \sqrt{175}}} -  { \cancel{\sqrt{70}}}   +  \sqrt{245} -  \sqrt{98}  -  { \cancel{\sqrt{175}}}   -  \sqrt{50}  +  \sqrt{245} +  { \cancel{\sqrt{70}}}  + 2 \sqrt{2}  }{ \sqrt{5}  +  \sqrt{7} }

  \sf=  >  \frac{ \sqrt{245}  -  \sqrt{98} -  \sqrt{50}  +  \sqrt{245}  + 2 \sqrt{2}  }{ \sqrt{5}  +  \sqrt{7} }

  \sf=  >  \frac{7 \sqrt{5}  - 7 \sqrt{2}  - 5 \sqrt{2}  + 7 \sqrt{5}  + 2 \sqrt{2} }{ \sqrt{5} +  \sqrt{7}  }

  \sf=  >  \frac{14 \sqrt{5} - 7 \sqrt{2}  - 5 \sqrt{2} + 2 \sqrt{2}   }{ \sqrt{5}  +  \sqrt{7} }

  \sf=  >  \frac{1 4\sqrt{5}  - (7 + 5 - 2) \sqrt{2} }{ \sqrt{5}  +  \sqrt{7} }

  \sf=  >  \frac{14 \sqrt{5}  - 10 \sqrt{2} }{ \sqrt{5} +  \sqrt{7}  }  \times  \frac{ \sqrt{5}  -  \sqrt{7} }{ \sqrt{5}  -  \sqrt{7} }

  \sf=  >  \frac{14 \sqrt{5} ( \sqrt{5}  -  \sqrt{7} ) - 10 \sqrt{2} ( \sqrt{5}  -  \sqrt{7} )}{ {( \sqrt{5} )}^{2}  -  {( \sqrt{7} )}^{2} }

Identity used here :

(a+b)(a-b)= a²-b²

  \sf=  >  \frac{14 \times 5 - 14 \sqrt{35}  - 10 \sqrt{2} \sqrt{5}  + 10 \sqrt{14}  }{5 - 7}

  \sf=  >  \frac{70 - 82.82 - 31.62 + 37.41}{ - 2}

  \sf=  >  \frac{ - 12.82 + 5.79}{ - 2}  =  \frac{ - 7.03}{ - 2}  =  \bold{3.515}

Attachments:
Similar questions