Math, asked by akkalavikas5, 3 months ago

7(50-7y\5)+5y= 45
Solve the equation ​

Answers

Answered by Flaunt
56

\huge\bold{\gray{\sf{Answer:}}}

\bold{Explanation:}

 \sf=  > 7\bigg(50 -  \dfrac{7y}{5}\bigg ) + 5y = 45

\sf =  > 7\bigg( \dfrac{250 - 7y}{5} \bigg) + 5y = 45

 \sf=  > 7\bigg( \dfrac{250 - 7y}{5} \bigg) +  \dfrac{25y}{5}  = 45

 \sf=  >  \dfrac{1750 - 49y + 25y}{5}  = 45

 \sf=  > 1750 - 49y + 25y = 225

 \sf=  > 1750 - 24y = 25

 \sf=  >  - 24y = 25 - 1750

 \sf=  >  - 24y =  - 1725

 \sf=  > y =  \dfrac{1725}{24}  = 71.87

Or If I solve through this :

 \sf=  > 7\bigg( \dfrac{50 - 7y}{5}\bigg ) + 5y = 45

\sf =  >  \dfrac{350 - 49y + 25y}{5}  = 45

 \sf=  > 350 - 24y = 45 \times 5

 \sf=  > 350 - 24y =   225

 \sf=  >  - 24y = 225 - 350

 \sf=  >  - 24y =  - 125

 \sf=  > y =  \dfrac{125}{24}  = 5.20

Answered by Anonymous
0

\huge\bold{\gray{\sf{Answer:}}}

\bold{Explanation:}

 \sf=  > 7\bigg(50 -  \dfrac{7y}{5}\bigg ) + 5y = 45

\sf =  > 7\bigg( \dfrac{250 - 7y}{5} \bigg) + 5y = 45

 \sf=  > 7\bigg( \dfrac{250 - 7y}{5} \bigg) +  \dfrac{25y}{5}  = 45

 \sf=  >  \dfrac{1750 - 49y + 25y}{5}  = 45

 \sf=  > 1750 - 49y + 25y = 225

 \sf=  > 1750 - 24y = 25

 \sf=  >  - 24y = 25 - 1750

 \sf=  >  - 24y =  - 1725

 \sf=  > y =  \dfrac{1725}{24}  = 71.87

Or If I solve through this :

 \sf=  > 7\bigg( \dfrac{50 - 7y}{5}\bigg ) + 5y = 45

\sf =  >  \dfrac{350 - 49y + 25y}{5}  = 45

 \sf=  > 350 - 24y = 45 \times 5

 \sf=  > 350 - 24y =   225

 \sf=  >  - 24y = 225 - 350

 \sf=  >  - 24y =  - 125

 \sf=  > y =  \dfrac{125}{24}  = 5.20

Similar questions