Math, asked by devrajtchintu, 2 months ago

√7-√8÷√5-√6 Rationalise the denominater

Answers

Answered by eshwargoudgoud504
5

Answer:

 \frac{ \sqrt{7}  -  \sqrt{8} }{ \sqrt{5} -  \sqrt{6}  }  \\ rationalising \: the \: denominater \:  \\  \frac{ \sqrt{7} -  \sqrt{8}  }{ \sqrt{5} -  \sqrt{6}  }  \times  \frac{ \sqrt{5} +  \sqrt{6}  }{ \sqrt{5}  +  \sqrt{6} }  \\  \frac{( \sqrt{7} -  \sqrt{8} )( \sqrt{5}   +  \sqrt{6} )}{( \sqrt{5}  ^{2}  -  \sqrt{6}  ^{2}) }  \\  =   \frac{( \sqrt{7} -  \sqrt{8} )( \sqrt{5}  +  \sqrt{6} ) }{ - 1}

Answered by Anonymous
3

To Rationalize :- √7 - √8/√5 - √6

Used Concepts :- Rationalization.

A identity a² - b² = ( a + b ) ( a - b )

Important Points to remember in these questions :-

( i ) We can also rationalize numerator .

( ii ) We want to get correct answer . But we didn't know that we have to rationalize at numerator or denominator . So we have to rationalize at that whose either denominator or numerator is single.

Solution :-

 \frac{ \sqrt{7  }  -  \sqrt{8} }{ \sqrt{5} -  \sqrt{6}  }

On Rationalising the denominator we get ,

 \frac{ \sqrt{7} -  \sqrt{8}  }{ \sqrt{5} -  \sqrt{6}  }  \times  \frac{ \sqrt{5} +  \sqrt{6}  }{ \sqrt{5}  +  \sqrt{6} }

 \frac{ \sqrt{7}( \sqrt{5} +  \sqrt{6}) -  \sqrt{8}( \sqrt{5} +  \sqrt{6})    }{5 - 6}

 \frac{ \sqrt{35} +  \sqrt{42} -  \sqrt{40} -  \sqrt{48} }{ - 1}

After Taking Minus Common we get,

 \frac{ - ( \sqrt{40} +  \sqrt{48} -  \sqrt{42}  -  \sqrt{35} )  }{ - 1}

After Cancelling minus we get ,

 \sqrt{40} +  \sqrt{48}  - \sqrt{42} -  \sqrt{35}

2 \sqrt{10}  + 4 \sqrt{3}  -  \sqrt{42}  -  \sqrt{35}

Therefore, The required answer is 2√10 + 4√3 - √42 - √35.

Similar questions