Math, asked by ajish390, 1 month ago

7. a) Given the recurrence relation a, = 6am-1 11an-2 + 6an-3 and the initialconditions ao = 2, a, = 5 and az = 15, find the solution. ​

Answers

Answered by amitnrw
2

Given  :   aₙ  = 6aₙ₋₁  - 11aₙ₋₂   + 6aₙ₋₃

a₀ = 2 , a₁ = 5 , a₂ =  15

To Find : Solution

Solution:

aₙ  = 6aₙ₋₁  - 11aₙ₋₂   + 6aₙ₋₃

aₙ  = 6aₙ₋₁  - 11aₙ₋₂   + 6aₙ₋₃

=> aₙ  =  α₁r₁ⁿ +  α₂r₂ⁿ +  α₃r₃ⁿ

where r₁ , r₂ and r₃  are roots of  

 r³  - 6r² +  11r  -  6  = 0

=> (r - 1) ( r² - 5r  + 6) = 0

=> (r - 1)(r - 2)(r - 3) = 0

Hence

aₙ  =  α₁  +  α₂2ⁿ +  α₃3ⁿ

a₀ =  α₁  +  α₂ +  α₃  = 2         Eq1

a₁ =  α₁   +  2α₂  +  3α₃   = 5   Eq2

a₂ =  α₁   +  4α₂  +  9α₃   = 15   Eq3

Eq2 - Eq1

=> α₂  +  2α₃   = 3

Eq3 - Eq2

=> 2α₂  +  6α₃   = 10  => α₂  +  3α₃   = 5

=> α₃ = 2

=> α₂  = - 1

Hence  α₁ = 1

=> aₙ  =  1  - 2ⁿ  + 2. 3ⁿ

aₙ  = 2. 3ⁿ - 2ⁿ  + 1

a₀ = 2 -  1 + 1 =  2      Verified

a₁ = 6 - 2 +  1  = 5      Verified

a₂ = 18 - 4 +  1 = 15     Verified

a₃ = 54 - 8 + 1  = 47

a₃ = 6a₂ - 11a₁ + 6a₀

=> a₃  = 6(15) - 11(5) + 6(2)

=> a₃ = 90 - 55 + 12

=> a₃  = 47         Verified

aₙ  = 2. 3ⁿ - 2ⁿ  + 1  is the required solution .

Learn More:

Find the recurrence relation of the given sequence `1 2 5 11 26 ...

https://brainly.in/question/20928529

The recurrence relation for the solution G(K) = {5.2}^{k} is ...

The recurrence relation for the solution G(K) =

A sequence is defined by the recurrence relation

https://brainly.in/question/31604560

Similar questions