Physics, asked by rivgrewal9872, 8 months ago

7. A particle is projected at an angle 1p
45°. The relation between range
and maximum height attained by
the particle is *

Answers

Answered by Anonymous
15

Answer:

 \boxed{\mathfrak{R = 4H_{max}}}

Explanation:

Angle of projection of projectile is given as:

 \rm \theta = 45\degree

Maximum height of projectile:

 \boxed{ \bold{H_{max} =  \dfrac{ {u}^{2} {sin}^{2}  \theta }{2g} }}

Horizontal range of projectile:

 \boxed{ \bold{R  = \dfrac{ {u}^{2}sin2 \theta }{g} }}

u → Initial velocity of projectile

g → Acceleration due to gravity

So, relation between range and maximum height attained by particle is:

 \rm \implies \dfrac{H_{max}}{R} =  \dfrac{ \dfrac{ \cancel{ {u}^{2}} {sin}^{2} \theta  }{2 \cancel{g}} }{ \dfrac{ \cancel{ {u}^{2}}sin2 \theta }{ \cancel{g}} }  \\  \\  \rm \implies \dfrac{H_{max}}{R} =  \dfrac{ \dfrac{  {sin}^{ \cancel{2}} \theta  }{2} }{ 2 \cancel{sin \theta} cos  \theta  } \\  \\  \rm \implies \dfrac{H_{max}}{R} =  \dfrac{ sin \theta}{2 \times 2cos \theta }  \\  \\ \rm \implies \dfrac{H_{max}}{R} =  \dfrac{ tan \theta}{4 }  \\   \\ \rm \implies \dfrac{H_{max}}{R} =  \dfrac{ tan 45 \degree}{4 }  \\  \\ \rm \implies \dfrac{H_{max}}{R} =  \dfrac{ 1}{4 }  \\  \\ \rm \implies  R = 4H_{max}

Answered by sue95
5

Answer:

Maximum height, H = (u²sin²θ)/2g

Given the angle of projection is 45°,

∴ H= [u²(1/√2)²]/2g= u²/4g = 1/4 (u²/g)---(1)

Range , R = (u²sin2θ)/g

∴R = (u²sin90°)/g = u²/g

Hence, (1)⇒ H = R/4

Similar questions