Math, asked by itzsehaj, 13 days ago

7. 'A' takes 12 days to complete a work. 'B' takes 15 days to complete the same work. If they work together, how many days they will take to complete the same work?​

Answers

Answered by ajumonihussain
1

Answer:

5 days

Step-by-step explanation:

Let x be the number of extra days

Work rate for A =W/12

Work rate for B = W/15

Now...

W/12 (3+x) +W/15x =W

3+x/12 + x/15 =1

therefore : x =5

Answered by OoAryanKingoO78
15

Answer:

\huge \dag{\boxed{\underline{\underline{\mathbb \purple{HRU?}}}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\huge{\underline{\mathfrak \purple{Question}}}

A' takes 12 days to complete a work. 'B' takes 15 days to complete the same work. If they work together, how many days they will take to complete the same work?

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\huge{\underline{\mathfrak \purple{Answer}}}

Let us find the Work rate

(\implies{\tt{\frac{W}{Days/Time}}})

Now, let us assume x to be number of Extra Days.

(i) For A = \tt{\frac{W}{12}}

(ii) For B = \tt{\frac{W}{15}}

\implies{\tt \red{\frac{W}{12}(3 + x) + \frac{W}{15}x => W}}

\implies{\tt \green{\frac{3 + x}{12} + \frac{x}{15} = 1}}

\boxed{\underline{\implies{\tt \purple{x = 15}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

HOPES IT HELPS!:)

Similar questions