7. ABC is a right triangle, right-angled at B. D and E
trisect BC, prove that 8(AE)^2 - 3(AC)^2 + 5(AD)^2
8. If one diagonal of a trapezium divides the other
diagonal in the ratio 1:3. Prove that one of the
parallel sides is three times the other.
Answers
Question:
ABC is a right triangle, right angled at B. D and E trisect the side BC. Prove that 8 AE² = 3 AC² + 5 AD²
Answer:
Step-by-step explanation:
∠B = 90°
BD = DE = EC
8 AE² = 3 AC² + 5 AD²
→ Let BD = DE = EC be x
→ Hence BE = 2 x, BC = 3x
→ Consider ΔABD
AD² = AB² + BD² (By pythagoras theorem)
AD² = AB² + x²------equation 1
→ Consider ΔABE
AE² = AB² + BE² (By pythagoras theorem)
AE² = AB² + (2x)²
AE² = AB² + 4x²------equation 2
→ Consider ΔABC
AC² = AB² + BC²
AC² = AB² + (3x)²
AC² = AB² + 9x²-------equation 3
→ Consider the RHS of the equation,
3 AC² + 5AD²
→ From equation 1 and 3 substitute the values of AC² and AD²
3AC² + 5 AD² = 3 (AB² + 9x²) + 5(AB² + x²)
3AC² + 5 AD² = 3 AB² + 27 x² + 5 AB² + 5 x²
3AC² + 5 AD² = 8 AB² + 32 x²
3AC² + 5 AD² = 8(AB² + 4x²)
→ From equation 2, AB² + 4x² = AE²
→ Hence,
3AC² + 5 AD² = 8 AE²
→ Hence proved.
Question:
If one diagonal of a trapezium, divides the other diagonal in the ratio 1 : 3, prove that one of the parallel sides is three times the other.
Answer:
- A trapezium ABCD, AB║CD
- Diagonals AD and BC, OA : OD = 1:3
- CD = 3 AB
→ Consider Δ AOB and ΔDOC
∠AOB = ∠COD (Vertically opposite angles)
∠BAO = ∠ODC ( Alternate interior angles)
→ Hence ΔAOB ΔDOC (By AA criteria)
→ Therefore,
AO/DO = AB/DC
→ But we know that AO : DO = 1:3
1/3 = AB/DC
→ Cross multiplying,
CD = 3 AB
→ Hence proved.
Answer:
Step-by-step explanation:
\Large{\underline{\underline{\bf{Given:}}}}
Given:
∠B = 90°
BD = DE = EC
\Large{\underline{\underline{\bf{To\:Prove:}}}}
ToProve:
8 AE² = 3 AC² + 5 AD²
\Large{\underline{\underline{\bf{Proof:}}}}
Proof:
→ Let BD = DE = EC be x
→ Hence BE = 2 x, BC = 3x
→ Consider ΔABD
AD² = AB² + BD² (By pythagoras theorem)
AD² = AB² + x²------equation 1
→ Consider ΔABE
AE² = AB² + BE² (By pythagoras theorem)
AE² = AB² + (2x)²
AE² = AB² + 4x²------equation 2
→ Consider ΔABC
AC² = AB² + BC²
AC² = AB² + (3x)²
AC² = AB² + 9x²-------equation 3
→ Consider the RHS of the equation,
3 AC² + 5AD²
→ From equation 1 and 3 substitute the values of AC² and AD²
3AC² + 5 AD² = 3 (AB² + 9x²) + 5(AB² + x²)
3AC² + 5 AD² = 3 AB² + 27 x² + 5 AB² + 5 x²
3AC² + 5 AD² = 8 AB² + 32 x²
3AC² + 5 AD² = 8(AB² + 4x²)
→ From equation 2, AB² + 4x² = AE²
→ Hence,
3AC² + 5 AD² = 8 AE²
→ Hence proved.
Question:
If one diagonal of a trapezium, divides the other diagonal in the ratio 1 : 3, prove that one of the parallel sides is three times the other.
Answer:
\Large{\underline{\underline{\bf{Given:}}}}
Given:
A trapezium ABCD, AB║CD
Diagonals AD and BC, OA : OD = 1:3
\Large{\underline{\underline{\bf{To\:Prove:}}}}
ToProve:
CD = 3 AB
\Large{\underline{\underline{\bf{Proof:}}}}
Proof:
→ Consider Δ AOB and ΔDOC
∠AOB = ∠COD (Vertically opposite angles)
∠BAO = ∠ODC ( Alternate interior angles)
→ Hence ΔAOB \sim∼ ΔDOC (By AA criteria)
→ Therefore,
AO/DO = AB/DC
→ But we know that AO : DO = 1:3
1/3 = AB/DC
→ Cross multiplying,
CD = 3 AB
→ Hence proved.