Math, asked by itzsehaj, 1 day ago

7. ΔABC is right angled at A (Fig 11.25). AD is perpendicular to BC. If AB = 5 cm, BC = 13 cm and AC = 12 cm, Find the area of ΔABC. Also find the length of AD.

Attachments:

Answers

Answered by OoAryanKingoO78
9

Answer:

\huge\tt{\underline{Question}}

ΔABC is right angled at A (Fig 11.25). AD is perpendicular to BC. If AB = 5 cm, BC = 13 cm and AC = 12 cm, Find the area of ΔABC. Also find the length of AD.

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Given that:-

  • ΔABC is right angled at A
  • AD is perpendicular to BC.
  • AB = 5 cm, BC = 13 cm and AC = 12 cm

To find:-

  • The area of triangle ABC
  • Length of AD

Answer:-

From the question it is given that,

AB = 5 cm, BC = 13 cm, AC = 12 cm

We know that,

Area of the ΔABC = ½ × base × height

= ½ × AB × AC

= ½ × 5 × 12

= 1 × 5 × 6

= 30 cm2

Now,

Area of ΔABC = ½ × base × height

30 = ½ × AD × BC

30 = ½ × AD × 13

(30 × 2)/13 = AD

AD = 60/13

AD = 4.6 cm

  • Therefore area of triangle ABC = 30cm² and length of AD = 4.6cm

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Attachments:
Answered by llMsCutiepiell
30

\huge{\underline{\mathtt{\red{QU}\pink{E}\green{S}\blue{T}\purple{I}\orange{ON}}}}

✿ΔABC is right-angled at A. AD is perpendicular to BC, AB=5cm, BC=13 cm and AC=12 cm. Find the area of ΔABC. Also, find the length of AD.

_______________________________

\huge{\underline{\mathtt{\red{A}\pink{N}\green{S}\blue{W}\purple{E}\orange{R}}}}

\boxed{\rm{\orange{Given \longrightarrow }}}

ΔABC is right-angled at "A".

AD is perpendicular to BC.

BC=13 cm

AB=5cm

AC=12 cm

\boxed{\rm{\red{To\:Find\longrightarrow }}}

Area of ΔABC

Length of AD

\boxed{\rm{\pink{Explanation\longrightarrow }}}

In right angles triangle BAC, AB=5cm and AC=12cm

Area of triangle,

\sf\purple{↬} \dfrac{1}{2}×base×height

\sf\green{↬} \dfrac{1}{2}×AB×AC

\sf\orange{↬}\dfrac{1}{2}×5×12 =30cm²

Now, in ΔABC,

Area of triangle ABC,

\sf\pink{↬} \dfrac{1}{2}×BC×AD

\sf\blue{↬} \dfrac{1}{2}×30×AD

\sf\red{↬} AD=\dfrac{13×2}{13}=1360\:cm

________________________________

Attachments:
Similar questions