Math, asked by itzsehaj, 9 hours ago

7. ΔABC is right angled at A (Fig 11.25). AD is perpendicular to BC. If AB = 5 cm, BC = 13 cm and AC = 12 cm, Find the area of ΔABC. Also find the length of AD.
no spam

Attachments:

Answers

Answered by manisha30nov
1

Answer:

30 cmsq is the right answer

Attachments:
Answered by AnanyaBaalveer
6

Given:-

  • AB = 5cm
  • BC = 13cm
  • AC = 12cm
  • AD = ?

To Find:-

  • Area of the figure.
  • Length of AD.

Solution:-

The given figure is a triangle with measures of each side is different.So, it is a scalene triangle.

We know that to find the area of a scalene triangle we use the Heron's Formula.

The Heron's Formula is :-

  • \footnotesize\underline{\sf{ \longmapsto \:  \sqrt{s( s- a)(s -b )(s - c)} }}

Where,

  • s = a+b+c/2
  • a = first side
  • b = second side
  • c = third side

On calculating the s we get:-

  • \footnotesize{\bf{ \frac{12cm + 5cm + 13cm}{2}  }}
  • \footnotesize{\bf{ \frac{30cm}{2} }}
  • \footnotesize\underline{\bf{15cm}}

So, now we will find the area of the figure:-

  • \footnotesize\underline{\bf{ \sqrt{ \{15(15 - 13)(15 - 12)(15 - 5) \}}  {cm}^{2} }}
  • \footnotesize\underline{\bf{ \sqrt{ \{3 \times 5(2)(3)(2 \times 5) \}} {cm}^{2}  }}
  • \footnotesize\underline{\bf{ \longmapsto3 \times 5 \times 2}}
  • \large \green{\underline{ \blue {\boxed{\bf{ \maltese \:  \:  \:  \:  \red{30cm^{2} }}}}}}

Now we got the area of the figure.

Now we will use the formula that is acceptable to all the triangle.

  • ½×b×h

Where,

  • b = base = 13cm
  • h = height = AD
  • Area = 30cm²

On substituting the values we get:-

  • \large\underline{\bf{ \frac{1}{2} \times 13cm \times h = 30 {cm}^{2}  }}
  • \large\underline{\bf{h =  \frac{30 {cm}^{2}  \times 2}{13cm} }}
  • \large\underline{\bf{h =  \frac{60cm}{13} }}
  • \large\underline{\bf{h = 4.61cm}}

Similar questions