Math, asked by Anonymous, 3 months ago

7. An aquarium is in the form of a cuboid whose external measures are 90 cm x 40 cm x 50 cm
The bottom, side faces and back face are to be covered with a colour paper. Find the total colour paper needed .​

Answers

Answered by Anonymous
5

Answer:

Hello behen

This is your answer

If the answer is right so mark brainliest...........if wrong so as your wish u can only give me thanks....

Step-by-step explanation:

Area of paper required = area of base + 2 area of side + area of back

=(90x40)+2(40*50)+90*50

=3600+4000+4500

=12100cm^{2}

Answered by suraj5070
280

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

\tt An\: aquarium\: is\: in\: the\: form \:of \:a\: cuboid\\\tt whose\: external\: measures\: are\: 90\: cm x 40\: cm x 50 \:cm\\\tt The\: bottom\:, side\: faces\: and\: back\: face\\\tt are\: to \:be\: covered\: with\: a \:colour \:paper. \\\tt Find\: the\: total\: colour\: paper\: needed.

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf  {\boxed {\mathbb {GIVEN}}}

  •  \sf \bf Length(l) =90\:cm
  •  \sf \bf Breadth(b) =40\:cm
  •  \sf \bf Height(h) =50\:cm

 \sf \bf  {\boxed {\mathbb {TO\:SOLVE}}}

  •  \sf \bf Total \:colour \:paper \:needed \:to \:cover \:an \:aquarium

 \sf \bf  {\boxed {\mathbb {SOLUTION}}}

 \tt \underline {Let\: the\: total\: colour\: paper \:needed} \\\tt \underline {to \:cover\:an\:aquarium\:be\:x}

 \sf \bf (Area \:of \:paper \:needed) = (Area \:of \:base \:face) + 2 \times (Area \:of \:side \:face) + (Area\: of\: back \:face)

 \sf \bf \implies x= (l \times b) + 2 \times (b \times h) + (l \times h)

 \tt \underline {Substitute \:the\:values}

 \sf \bf \implies x= (90 \times 40) + 2 \times (40 \times 50) + (90 \times 50)

 \sf \bf \implies x= 3600 + 2 \times 2000 + 4500

 \sf \bf \implies x=3600+4000+4500

\implies {\boxed{\boxed {\color{green} {\sf \bf  x=12100\:{cm}^{2}}}}}

 \tt \therefore\underline {12100 \:{cm}^{2} \:of\:colour\:paper\:needed \:to \:cover \:the\:aquarium}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

_________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \sf \bf Area\:of\:trapezium = \dfrac{a+b}{2} h

 \sf \bf Area\:of\:rhombus = \dfrac{d_1 \times d_2}{2}

 \sf \bf Area\:of\:spherical \:quadrilateral= \dfrac{h_1+h_2}{2} d

 \sf \bf T.S.A\:of\:cuboid =2(lb \times bh \times hl)

 \sf \bf T.S.A \:of\:cube=6{a}^{2}

 \sf \bf T.S.A \:of\:cylinder=2 \pi r (r+h)

 \sf \bf Volume\:of\:cuboid=l \times b \times h

 \sf \bf Volume\:of\:cube= {a}^{3}

 \sf \bf Volume\:of\:cylinder=\pi {r}^{2}h

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Similar questions