Math, asked by Anonymous, 3 months ago

7. α and β are zeroes of the quadratic polynomial x2 – 6x + y. Find the value of ‘y’ if 3α + 2β = 20.

8. If the zeroes of the polynomial x3 – 3x2 + x + 1 are a – b, a, a + b, then find the value of a and b.

9. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes, respectively.

Answers

Answered by mathdude500
14

Answer :- 7

Given that

 \sf \:  \alpha  \: and \:  \beta  \: are \: the \: zeroes \: of \:  {x}^{2} - 6x + y

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \: \alpha  +  \beta  =  - \dfrac{( - 6)}{1}  = 6 -  -  - (1)

Also,

Given that,

\rm :\longmapsto\:3 \alpha  + 2 \beta  = 20

\rm :\longmapsto\: \alpha + 2 \alpha   + 2 \beta  = 20

\rm :\longmapsto\: \alpha + 2( \alpha   +  \beta)  = 20

\rm :\longmapsto\: \alpha  + 2 \times 6 = 20

\rm :\longmapsto\: \alpha  + 12 = 20

\rm :\longmapsto\: \alpha = 20 - 1

\bf\implies \: \alpha  = 8

 \sf \:  Since,  \: \alpha \:is \: the \: zeroes \: of \:  {x}^{2} - 6x + y

 \sf \:  \therefore  \: \alpha \: = 8 \: must \: satisfy \:  {x}^{2} - 6x + y

\rm :\implies\: {8}^{2}  - 6 \times 8 + y = 0

\rm :\implies\: 64  - 48 + y = 0

\rm :\implies\: 16+ y = 0

\rm :\implies\: y =  -  \: 16

Answer :- 8

Given that

\sf \: a - b,a,a + b \: are \: zeroes \: of \:  {x}^{3} -  {3x}^{2} + x + 1

We know that,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{3}}}}

\rm :\implies\:a - b + a + a + b =  - \dfrac{( - 3)}{1}

\rm :\implies\:3a=  3

 \pink{\bf\implies \:a = 1}

Also,

We know that,

\boxed{\red{\sf Product\ of\ the\ zeroes= -  \: \frac{Constant}{coefficient\ of\ x^{3}}}}

\rm :\implies\:(a - b)(a)(a + b) =  - \dfrac{(1)}{1}

Put a = 1, we get

\rm :\longmapsto\:(1 - b)(1)(1 + b) =   - 1

\rm :\longmapsto\:1 -  {b}^{2}  = -  1

\rm :\longmapsto\:{b}^{2}  = 2

 \purple{\bf\implies \:b =  \pm \:  \sqrt{2} }

Answer :- 9

Let

  • 'S' represents the Sum of the zeroes of a quadratic polynomial.

and

Let

  • 'P' represents the Product of the zeroes of a quadratic polynomial.

Then,

Required Quadratic polynomial is

 \:  \:  \:  \:  \:  \:  \:  \: \purple{ \boxed{ \bf \:f(x) = k( {x}^{2} - Sx + P) \: where \: k \ne \: 0}}

Similar questions