7 (b) 16 7 22 7 6 7 (d) If (ax + 1) (bx-3)=6x² + cx-3 for all values of x and a+b=5, what are the two possible values for c?
Answers
Answered by
2
Answer:
The value is f(7)=-17.
Step-by-step explanation:
Given : Function f(x)=ax^7+bx^3+cx-5f(x)=ax
7
+bx
3
+cx−5 where a,b and c are constants. If f(-7)=7.
To find : The value of f(7) ?
Solution :
f(x)=ax^7+bx^3+cx-5f(x)=ax
7
+bx
3
+cx−5
Substitute x=-7,
f(-7)=a(-7)^7+b(-7)^3+c(-7)-5f(−7)=a(−7)
7
+b(−7)
3
+c(−7)−5
-a(7)^7-b(7)^3-c(7)-5=7−a(7)
7
−b(7)
3
−c(7)−5=7 ....(1)
Substitute x=7,
f(7)=a(7)^7+b(7)^3+c(7)-5f(7)=a(7)
7
+b(7)
3
+c(7)−5
a(7)^7+b(7)^3+c(7)-5=xa(7)
7
+b(7)
3
+c(7)−5=x ....(2)
Add equation (1) and (2),
-a(7)^7-b(7)^3-c(7)-5+a(7)^7+b(7)^3+c(7)-5=7+x−a(7)
7
−b(7)
3
−c(7)−5+a(7)
7
+b(7)
3
+c(7)−5=7+x
-10=7+x−10=7+x
x=-17x=−17
Similar questions