Math, asked by mrdewkate3700, 1 year ago

7 chairs and 5 tables cost 3950 and 8 chairs and 11 tables cost 6100. Find the cost of one chair and one table separately.

Answers

Answered by BrainlyConqueror0901
116

Answer:

\huge{\red{\boxed{\red{\boxed{\green{\underline{\sf{x=350\:and\: y=300-}}}}}}}}

Step-by-step explanation:

\huge{\red{\boxed{\red{\boxed{\blue{\underline{\sf{\red{SOLUTION-}}}}}}}}}

chairs = x \\ tables = y \\ according \: to \: question \\ 7x + 5y = 3950 \\ we \: use \: substitution \: method \: to \: solve \\ 7x = 3950 - 5y \\ x =  \frac{3950 - 5y}{7}  -  -  -  -  - (1) \\ 8x + 11y = 6100 -  -  -  -  - (2) \\ putting \: value \: of  \: x\:in \: (2) \\ 8 \times  \frac{(3950 - 5y)}{7}  + 11y = 6100 \\  = ) \frac{31600 - 40y}{7}  +  \frac{11y}{1}  = 6100 \\  = ) \frac{31600 - 40y + 77y}{7}  = 6100 \\  = )31600 + 37y = 42700 \\  = )37y   = 42700 - 31600 \\  = )37y = 11100 \\  = )y =  \frac{11100}{37}  \\  = )y = 300 \\ putting \: value \: of \: y \: in \: (1) \\ = ) x =  \frac{3950 - 5 \times 300}{7}  \\ = ) x =  \frac{3950 - 1500}{7}  \\  = )x =  \frac{2450}{7}  \\  = )x = 350 \\

>> COST OF CHAIR = 350

>> COST OF TABLE = 300

\huge{\red{\boxed{\red{\boxed{\green{\underline{\sf{x=350\:and\: y=300-}}}}}}}}

Similar questions