Math, asked by VivekGhosh, 1 year ago

7 cm Three currencies in diameter are placed in such a way that each currency touches the other two coins, then what is the area of ​​the field between the three coins?​

Answers

Answered by kartik2507
1

join the centre of the circles

we get a equilateral triangle with side 7cm

and 3 sector with angle of 60°

area of triangle

 =  \frac{ \sqrt{3} }{4}  \times  {a}^{2}  \\   = \frac{ \sqrt{3} }{4}  \times 7 \times 7 \\    = \frac{ \sqrt{3} }{4}  \times 49 \\ = 21.22 \\ area \: of \: three \: sectors \\ =  3 \times  \frac{60}{360}   \times  \frac{22}{7} \times 3.5 \times 3.5 \\  = 19.25 \\ area \: in \: between \: circles \\ 21.22 - 19.25 = 1.97

therefore area in between the 3 circle is 1.97 sqcm

Similar questions