7) Convert the complex number
z=i-1/cos π/3+ isin π/3 in polar form
Answers
Step-by-step
Z= (i-1)/[cos(π/3) + i.sin(π/3)]
Z= (i-1)/[(1/2) + i.(√3)/2]
Z= (i-1)/[(1+√3.i)/2]
Z= 2(i-1)/[1+√3.i]
Z= [(2i-2)*(1-√3.i)]/[(1+√3.i)*(1- √3.i)]
Z= [2i - 2√3(i^2) - 2 + 2√3.i]/[1 - 3(i^2)]
Z= [(-2 + 2√3) + (2√3 + 2).i]/(1+ 3)
Z= [(-2 + 2√3) + (2√3 + 2).i]/4
Z= (-2 + 2√3)/4 + ((2√3 + 2).i)/4
Z= (-1 + √3)/2 + [(√3 + 1)/2]i
Thus, x=(√3-1)/2, y=(√3+1)/2
|Z| = r = √{[(√3-1)/2]^2 + [(√3-1)/2]^2}
= √{[(√3-1)^2]/4 + [(√3+1)^2]/4}
= √{[(3-2√3+1)+(3+2√3+1)]/4}
= √{[4+4]/4}
= √{8/4}
= √2
Now,
As x > 0 & y > 0
Theta(the symbol) = tan^(-1)[y/x] ...... (tan inverse of y by x)
= tan^(-1){[(√3+1)/2][(√3-1)/2]}
= tan^(-1)[(√3+1)/(√3-1)]
= tan^(-1)[(√3+1)*(√3+1)/(√3-1)*(√3+1)]
= tan^(-1)[(3+2√3+1)/(3-1)]
= tan^(-1)[(4+2√3)/2]
= tan^(-1)[2+√3]
Therefore,
the polar form is,
Z = r[cos(theta) + i sin(theta)]
Z = √2[cos(theta) + i sin(theta)]
where theta = tan^(-1)[2+√3]
5.4k views · View 8 Upvoters
Sponsored by Honey
What's the fastest way to find promo codes that work at checkout?
Honey scans the Internet for promo codes and applies them at checkout to save you money – and it's free.
Pls mark it as the brainliest