Math, asked by snehalpawar4542, 1 year ago

7) Convert the complex number
z=i-1/cos π/3+ isin π/3 in polar form​

Answers

Answered by kkhairnar789
27

Step-by-step

Z= (i-1)/[cos(π/3) + i.sin(π/3)]

Z= (i-1)/[(1/2) + i.(√3)/2]

Z= (i-1)/[(1+√3.i)/2]

Z= 2(i-1)/[1+√3.i]

Z= [(2i-2)*(1-√3.i)]/[(1+√3.i)*(1- √3.i)]

Z= [2i - 2√3(i^2) - 2 + 2√3.i]/[1 - 3(i^2)]

Z= [(-2 + 2√3) + (2√3 + 2).i]/(1+ 3)

Z= [(-2 + 2√3) + (2√3 + 2).i]/4

Z= (-2 + 2√3)/4 + ((2√3 + 2).i)/4

Z= (-1 + √3)/2 + [(√3 + 1)/2]i

Thus, x=(√3-1)/2, y=(√3+1)/2

|Z| = r = √{[(√3-1)/2]^2 + [(√3-1)/2]^2}

    = √{[(√3-1)^2]/4 + [(√3+1)^2]/4}

    = √{[(3-2√3+1)+(3+2√3+1)]/4}

    = √{[4+4]/4}

    = √{8/4}

    = √2

Now,

 As x > 0 & y > 0

Theta(the symbol) = tan^(-1)[y/x] ...... (tan inverse of y by x)

= tan^(-1){[(√3+1)/2][(√3-1)/2]}

= tan^(-1)[(√3+1)/(√3-1)]

= tan^(-1)[(√3+1)*(√3+1)/(√3-1)*(√3+1)]

= tan^(-1)[(3+2√3+1)/(3-1)]

= tan^(-1)[(4+2√3)/2]

= tan^(-1)[2+√3]

Therefore,

the polar form is,

Z = r[cos(theta) + i sin(theta)]

Z = √2[cos(theta) + i sin(theta)]

where theta = tan^(-1)[2+√3]

5.4k views · View 8 Upvoters

Sponsored by Honey

What's the fastest way to find promo codes that work at checkout?

Honey scans the Internet for promo codes and applies them at checkout to save you money – and it's free.

Answered by anindadebnath1993
2

Pls mark it as the brainliest

Attachments:
Similar questions