Math, asked by superstars8266, 1 year ago

7 cosecA -3 cotA =7 prove that 7 cotA - 3 cosecA =3

Answers

Answered by MaheswariS
12

\textbf{Given:}

7\,cosecA-3\,cotA=7

\text{Squaring on both sides, we get}

(7\,cosecA-3\,cotA)^2=49

\text{using}

\boxed{\bf(a-b)^2=a^2+b^2-2ab}

49\,cosec^2A+9\,cot^2A-42\,cosecA\,cotA=49

\text{using}

\boxed{\begin{minipage}{4cm}$\bf\,cosec^2A=1+cot^2A\\\\cot^2A=cosec^2A-1$\end{minipage}}

49(1+cot^2A)+9(cosec^2A-1)-42\,cosecA\,cotA=49

49+49\,cot^2A+9\,cosec^2A-9-42\,cosecA\,cotA=49

49\,cot^2A+9\,cosec^2A-9-42\,cosecA\,cotA=0

\implies(7\,cot\,A)^2+(3\,cosecA)^2-9-2\,(7\,cot\,A)(3\,cosec\,A)=9

\implies(7\,cot\,A-3\,cosecA)^2=9

\text{Take square root on both sides we get}

\implies\boxed{\bf\,7\,cot\,A-3\,cosecA=3}

Answered by byaswanth2005
1

Answer:

Hi your answer is as follows

Step-by-step explanation:

Given:

7 cosec A - 3cot A= 7

on squaring both sides we get,

49 cosec^2 A + 9 cot^2 A+42cosecA*cotA=49\\as, cosec^2 - cot^2 = 1\\and , cosec^2 = 1+cot^2,cot^2 = 1+cosec^2\\49[1+cot^2 A] + 9[1+cosec^2 A]-42cosecA*cotA=49\\49 +49 cot^2 A + 9 +9cosec^2 A-42cosecA*cotA = 49\\49cot^2 A +9cosec^2 A -42cosecA*cotA=9 \\We~can~write~49cot^2A~as (7cotA)^2~and~9cosecA~as~(3cosecA)^2and~42cosec*cot~as~2(3cosecA)(7cotA)\\On~substituting~we~get,\\(7cotA)^2+(3cosecA)^2-2(3cosecA)(7cotA)=9\\As~it~is~in~the~form~of~(a-b)^2=a^2+b^2-2ab\\It~can~be~written~as,

(7cotA-3cosecA)^2=9

on square rooting both sides we get,

7cotA - 3cosecA = 3

Hence proved

Mark as brainliest if you are satisfied with my answer

Similar questions