English, asked by manjeetkour746, 4 months ago

7. Did you like the nonsense poems? How are these po
ems different
from the other poems you have learnt?​

Answers

Answered by pk2489481
0

Answer:

Prove that:

\displaystyle\sf\:\dfrac{\csc\:\theta}{\csc\:\theta\:-\:1}\:+\:\dfrac{\csc\:\theta}{\csc\:\theta\:+\:1}\:=\:\dfrac{2}{\cos^2\:\theta}

cscθ−1

cscθ

+

cscθ+1

cscθ

=

cos

2

θ

2

Answer:

\displaystyle\boxed{\red{\sf\:\dfrac{\csc\:\theta}{\csc\:\theta\:-\:1}\:+\:\dfrac{\csc\:\theta}{\csc\:\theta\:+\:1}\:=\:\dfrac{2}{\cos^2\:\theta}}}

cscθ−1

cscθ

+

cscθ+1

cscθ

=

cos

2

θ

2

Step-by-step-explanation:

We have to prove the given trigonometric equation.

Considering LHS of the given equation,

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{\csc\:\theta}{\csc\:\theta\:-\:1}\:+\:\dfrac{\csc\:\theta}{\csc\:\theta\:+\:1}}⟹LHS=

cscθ−1

cscθ

+

cscθ+1

cscθ

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{\csc\:\theta\:\times\:(\:\csc\:\theta\:+\:1\:)\:+\:\csc\:\theta\:\times\:(\:\csc\:\theta\:-\:1\:)}{\:(\:\csc\:\theta\:-\:1\:)\:\times\:(\:\csc\:\theta\:+\:1\:)}}⟹LHS=

(cscθ−1)×(cscθ+1)

cscθ×(cscθ+1)+cscθ×(cscθ−1)

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{\csc^2\:\theta\:+\:1\:+\:\csc^2\:\theta\:-\:1}{\csc^2\:\theta\:-\:1^2}\:\:\:-\:-\:[\:(\:a\:+\:b\:)\:(\:a\:-\:b\:)\:=\:a^2\:-\:b^2\:]}⟹LHS=

csc

2

θ−1

2

csc

2

θ+1+csc

2

θ−1

−−[(a+b)(a−b)=a

2

−b

2

]

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{\csc^2\:\theta\:+\:\csc^2\:\theta}{\csc^2\:\theta\:-\:1}}⟹LHS=

csc

2

θ−1

csc

2

θ+csc

2

θ

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{2\:\csc^2\:\theta}{\cot^2\:\theta}\:\:\:-\:-\:[\:\because\:1\:+\:\cot^2\:\theta\:=\:\csc^2\:\theta\:]}⟹LHS=

cot

2

θ

2csc

2

θ

−−[∵1+cot

2

θ=csc

2

θ]

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{2\:\times\:\left(\:\dfrac{1}{\sin\:\theta}\:\right)^2}{\cot^2\:\theta}\:\:\:-\:-\:-\:[\:\because\:\csc\:\theta\:=\:\dfrac{1}{\sin\:\theta}\:]}⟹LHS=

cot

2

θ

2×(

sinθ

1

)

2

−−−[∵cscθ=

sinθ

1

]

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{2\:\times\:\left(\:\dfrac{1}{\sin\:\theta}\:\right)^2}{\left(\:\dfrac{\cos\:\theta}{\sin\:\theta}\:\right)^2}\:\:\:-\:-\:-\:[\:\because\:\cot\:\theta\:=\:\dfrac{\cos\:\theta}{\sin\:\theta}\:]}⟹LHS=

(

sinθ

cosθ

)

2

2×(

sinθ

1

)

2

−−−[∵cotθ=

sinθ

cosθ

]

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{2\:\times\:\left(\:\dfrac{1}{\sin\:\theta}\:\right)\:\times\:\left(\:\dfrac{1}{\sin\:\theta}\:\right)}{\left(\:\dfrac{\cos\:\theta}{\sin\:\theta}\:\right)\:\times\:\left(\:\dfrac{\cos\:\theta}{\sin\:\theta}\:\right)}}⟹LHS=

(

sinθ

cosθ

)×(

sinθ

cosθ

)

2×(

sinθ

1

)×(

sinθ

1

)

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{2\:\times\:\cancel{\sin\:\theta}\:\times\:\cancel{\sin\:\theta}}{\cancel{\sin\:\theta}\:\times\:\cancel{\sin\:\theta}\:\times\:\cos\:\theta\:\times\:\cos\:\theta}}⟹LHS=

sinθ

×

sinθ

×cosθ×cosθ

sinθ

×

sinθ

\displaystyle{\implies\sf\:LHS\:=\:\dfrac{2}{\cos^2\:\theta}}⟹LHS=

cos

2

θ

2

\displaystyle{\implies\sf\:RHS\:=\:\dfrac{2}{\cos^2\:\theta}}⟹RHS=

cos

2

θ

2

\displaystyle{\therefore\boxed{\red{\sf\:LHS\:=\:RHS}}}∴

LHS=RHS

Hence proved!

Similar questions