Math, asked by sujataneeraj, 1 day ago

7.Divide 72 in four parts in AP, such that the ratio of the product of their extremes (1st and 4th) to the product of means (2nd and 3rd) is 27:35. Find the four parts.​

Answers

Answered by suhrids88
3

Answer:

Let the four parts be (a−3d),(a−d),(a+d) and (a+3d).

Then, Sum of the numbers =32

⟹(a−3d)+(a−d)+(a+d)+(a+3d)=32⟹4a=32⟹a=8

It is given that

(a−d)(a+d)

(a−3d)(a+3d)

=

15

7

a

2

−d

2

a

2

−9d

2

=

15

7

64−d

2

64−9d

2

=

15

7

⟹128d

2

=512⟹d

2

=4⟹d=±2

Thus, the four parts are a−3d,a−d,a+d and 3d, i.e. 2,6,10,1

Step-by-step explanation:

Answered by Syamkumarr
2

Answer:

The four parts are 9, 15, 21, 27

Given problem:

Divide 72 in four parts in AP, such that the ratio of the product of their extremes (1st and 4th) to the product of means (2nd and 3rd) is 27:35. Find the four parts.

Step-by-step explanation:

Given number 72

let the (a-3d), (a-d), (a+d), (a+3d) are be the 4 parts which are in AP

                                               [with common difference 2d ]

here 72 is divided as (a-3d), (a-d), (a+d), (a+3d)

then sum of 4 terms will be equals to 72  

      a - 3d + a - d + a + d + a + 3d  = 72

                                                   4a = 72  

                                                      a = 18        

product of extremes (1st and 4th terms) = (a-3d)(a+3d)  = a²-9d²

product of means  (2nd and 3rd terms)  =  (a-d) (a+d)  = a²-d²

given that the ratio of the product of their extremes to product of their means = 27:35

             (a²-9d²) : (a²-d²) = 27 : 35  

                             \frac{ a^{2} -9d^{2} }{a^{2} - d^{2}  }  =  \frac{27}{35}          

                             \frac{  324 -9d^{2} }{324 - d^{2}  }  =  \frac{27}{35}      [ ∵ a² = 18² = 324 ]  

                  35(324 - 9d²) = 27 (324 -d²)      

                  11340 - 315d² = 8748 - 27d²    

                           288 d²  = 2592

                                    d² = 9

                                    d  = 3  

the required numbers  (a-3d)  = 18 - 9 = 9

                                       (a-d)   = 18-3 = 15

                                       (a+d)  = 18+3 = 21  

                                      (a+3d) = 18+9 = 27

Similar questions