Math, asked by Kajjall, 11 months ago

7.
Eliminate alpha, if x = r cos alpha, y=r sin alpha​

Answers

Answered by mysticd
6

 \underline { \pink { Eliminating \: \alpha: }

 Given \: x = r \: cos \:\alpha \: ---(1)

 and \: y = r \: sin \:\alpha \: ---(2)

 \implies x^{2} + y^{2} = ( r \: cos \:\alpha)^{2} + (r \: sin \:\alpha)^{2}

 \implies x^{2} + y^{2} =  r^{2} \: cos^{2} \:\alpha + r^{2}\: sin^{2}\:\alpha

 \implies x^{2} + y^{2} =  r^{2} ( cos^{2} \:\alpha + sin^{2}\:\alpha )

 \implies x^{2} + y^{2} =  r^{2}\times 1

By Trigonometric Identity :

 \boxed { \orange { cos^{2}\alpha + sin^{2}\alpha = 1 }}

 \implies x^{2} + y^{2} =  r^{2}

Therefore.,

 \blue { x^{2} + y^{2} =  r^{2}}

•••♪

Similar questions