Math, asked by kusumapriyachukka, 6 months ago

7.
Express the following as a sum or difference:
i)
2 sin 54º sin 66°
ii)
2 sin 54° cos 66°​

Answers

Answered by jui29
3

Answer:

i) 2 sin 54° sin 66°

=2*0.7 *0.91

=1.28

ii)2 sin 54° cos 66°

=2*0.8*0.4

=0.65

Step-by-step explanation:

I hope that will be helpful. Please mark me as a brainliest please.

Answered by vennaraghu18
4

Answer:

i) Cos(54°-66°)-Cos(54°+66°)

ii) Sin(54°+66°)+Sin(54°-66°)

Step-by-step explanation:

i) Cos(a-b)= Cosa Cosb + Sina Sinb

HERE a=54°, b= 66°

Then cos(54°-66°)= cos 54° cos 66° + Sin 54° sin 66° (equ 1)

Similarly Cos (a+b) = Cosa Cosb - Sina Sinb

Then Cos (54°-66°) = Cos 54° Cos66° - Sin 54° Sin66° (eqn 2)

Subtracting equ 2 from eqn 1

Then Cos(a-b)-Cos(a+b)= Cosa Cosb +Sina Sinb -(Cosa Cosb +Sina Sinb)

= Cosa Cosb + Sina Sinb - Cosa Cosb + Sina Sinb

=2 Sina Sinb

= 2 Sin54° Sin66°

Therefore, 2 Sin54° Sin66° = Cos(54°-66°)-Cos(54°+66°)

ii) Sin(a+b) = Sina Cosb + Cosa Sinb

HERE a= 54°,b=66°

Then Sin(54°+66°) = Sin54° Cos66° + Cos54° Sin66° (eqn 1)

Similarly Sin(a-b) = Sina Cosb - Cosa Sinb

Then Sin(54°-66°) = Sin54° Cos66° - Cos54° Sin66° (eqn 2)

Adding eqn 1 & eqn 2

Then Sin(a+b)+Sin(a-b) = Sina Cosb + Cosa Sinb + Sina Cosb - Cosa Sinb

= 2 Sina Cosb

= 2 Sin54° Cos66°

Therefore, 2 Sin54° Cos66° = Sin(54°+66°) + Sin(54°-66°)

Similar questions