Math, asked by sm9837993521, 5 months ago

7. Factorise:a4-1/b4​

Answers

Answered by pulakmath007
2

SOLUTION

TO FACTORISE

\displaystyle \sf{ {a}^{4} -  \frac{1}{ {b}^{4} }   }

FORMULA TO BE IMPLEMENTED

We are aware of the formula that

\displaystyle \sf{ {a}^{2} - {b}^{2}   = (a + b)(a - b) }

EVALUATION

Here the given expression is

\displaystyle \sf{ {a}^{4} -  \frac{1}{ {b}^{4} }   }

We factorise it as below

\displaystyle \sf{  = {( {a}^{2} )}^{2} -   { \bigg( \frac{1}{ {b}^{2} }  \bigg)}^{2}    }

\displaystyle \sf{  = \bigg(  {a}^{2} +  \frac{1}{ {b}^{2} }  \bigg)\bigg(  {a}^{2}  -   \frac{1}{ {b}^{2} }  \bigg)}

\displaystyle \sf{  = \bigg(  {a}^{2} +  \frac{1}{ {b}^{2} }  \bigg)\bigg(  a +  \frac{1}{b}   \bigg)\bigg(  a  -   \frac{1}{b}   \bigg)}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Find the value of the expression a² – 2ab + b² for a = 1, b = 1

https://brainly.in/question/28961155

2. to verify algebraic identity a2-b2=(a+b)(a-b)

https://brainly.in/question/10726280

Answered by HarshitJaiswal2534
2

Step-by-step explanation:

SOLUTION

TO FACTORISE

\displaystyle \sf{ {a}^{4} -  \frac{1}{ {b}^{4} }   }

FORMULA TO BE IMPLEMENTED

We are aware of the formula that

\displaystyle \sf{ {a}^{2} - {b}^{2}   = (a + b)(a - b) }

EVALUATION

Here the given expression is

\displaystyle \sf{ {a}^{4} -  \frac{1}{ {b}^{4} }   }

We factorise it as below

\displaystyle \sf{  = {( {a}^{2} )}^{2} -   { \bigg( \frac{1}{ {b}^{2} }  \bigg)}^{2}    }

\displaystyle \sf{  = \bigg(  {a}^{2} +  \frac{1}{ {b}^{2} }  \bigg)\bigg(  {a}^{2}  -   \frac{1}{ {b}^{2} }  \bigg)}

\displaystyle \sf{  = \bigg(  {a}^{2} +  \frac{1}{ {b}^{2} }  \bigg)\bigg(  a +  \frac{1}{b}   \bigg)\bigg(  a  -   \frac{1}{b}   \bigg)}

━━━━━━━━━━━━━━━━

#BeBrainly

Similar questions