Math, asked by avanishyadav841899, 1 month ago

7.Find a quadratic polynomial, the sum and product of whos zeroes are v2 and -3/2 respectively.

Answers

Answered by Anonymous
28

Answer:

Given :-

  • The sum and product of zeroes are √2 and - 3/2 respectively.

To Find :-

  • What is the quadratic polynomial.

Formula Used :-

\clubsuit Quadratic Polynomial Formula :

\footnotesize\mapsto \sf\boxed{\bold{\pink{x^2 - (Sum\: Of\: Roots)x + (Product\: Of\: Roots)}}}

Solution :-

Given :

Sum Of Roots (α + β) = 2

Product Of Roots (αβ) = - 3/2

According to the question by using the formula we get,

\longrightarrow \sf\bold{\purple{x^2 - (\alpha + \beta)x + (\alpha\beta)}}

\longrightarrow \sf x^2 - (\sqrt{2})x + \bigg(- \dfrac{3}{2}\bigg)

\longrightarrow \sf\bold{\red{x^2 - \sqrt{2}x - \dfrac{3}{2}}}

{\small{\bold{\underline{\therefore\: The\: required\: quadratic\: polynomial\: is\: x^2 - \sqrt{2}x - \dfrac{3}{2}\: .}}}}

Answered by TrustedAnswerer19
25

 \:  \:  \:  \:  \boxed{ \bf \:  {x}^{2}  -  \sqrt{2}  \: x -  \frac{3}{2} }

Explanation :

 \bf \leadsto \: given \\  \\ \small{  \rm \to \: sum \: of \: zeroes \: of \: a \: quadratic \: polynomial : } \\   \:  \:  \:  \:  \: \rm \:  \alpha    + \beta  =  \sqrt{2}  \\  \\ \small{  \rm \to \: product \: of \: zeroes \: of \: a \: quadratic \: polynomial : } \\  \:  \rm \:  \alpha  \beta  =  -  \frac{3}{2}

→ We have to find that quadratic polynomial.

Solution :

\pink{ \boxed{\boxed{\begin{array}{cc} \underline{ \bf \: we \: know \: that} \\  \\  \sf \to  \: general \: formula \: of \: a \: quadratic \:  \\  \sf \: polynomial \:  \: is \:  :  \\  \\  \blue{ \boxed{ \bf \:  {x}^{2} - ( \alpha  +  \beta )x -  \alpha  \beta  }} \\  \\ \bf \: here \\  \\  \bf \:  \alpha  +  \beta  = sum \: of \: zeroes \\  \\  \bf \:  \alpha  \beta  = product \: of \: zeroes  \end{array}}}}

Now, according to the question

The quadratic polynomial is :

{ \boxed{\boxed{\begin{array}{cc}  \bf \: {x}^{2}   - ( \alpha +   \beta)x +  \alpha  \beta   \\  \\  \bf \implies \: {x}^{2}  -  \sqrt{2}  \: x  + ( -  \frac{3}{2}) \\  \\ \bf \implies \: {x}^{2}   -  \sqrt{2} \: x -  \frac{3}{2}  \end{array}}}}

Similar questions