Physics, asked by paominlen35, 6 months ago

7. Find dy/dx when
y=1/x2+1/√x​

Answers

Answered by Anonymous
2

Given:

 \rm y =  \dfrac{1}{ {x}^{2} }  +  \dfrac{1}{ \sqrt{x} }

To Find:

 \rm  \dfrac{dy}{dx}

Answer:

 \rm \implies    \dfrac{dy}{dx}  \\  \\  \rm \implies  \dfrac{d}{dx}  \bigg( \dfrac{1}{ {x}^{2} }  +  \dfrac{1}{ \sqrt{x} }  \bigg)\\  \\  \rm \implies  \dfrac{d}{dx} ( {x}^{ - 2}  +  {x}^{ -  \frac{1}{2} } ) \\  \\ \rm By \:  using  \: power \:  rule, \\ \rm  \dfrac{d}{dx} ( {x}^{n} ) = n {x}^{n - 1}  :  \\  \\  \rm \implies  - 2 {x}^{ - 2 - 1}  -  \dfrac{1}{2}  {x}^{ -  \frac{1}{2} - 1 }   \\  \\  \rm \implies  - 2 {x}^{ - 3}  -  \dfrac{1}{2}  {x}^{ -  \frac{3}{2}  }  \\  \\  \rm \implies   -  \dfrac{2}{ {x}^{3} }  -  \dfrac{1}{2 {x}^{ \frac{3}{2} } }  \\  \\   \rm \implies   -  \dfrac{2}{ {x}^{3} }  -  \dfrac{1}{2  \sqrt{ {x}^{3} } } \\  \\ \rm \implies   -   \bigg(\dfrac{2}{ {x}^{3} }   +   \dfrac{1}{2  \sqrt{ {x}^{3} } } \bigg)

 \therefore  \boxed{\mathfrak{\dfrac{dy}{dx} = -   \bigg(\dfrac{2}{ {x}^{3} }   +   \dfrac{1}{2  \sqrt{ {x}^{3} } } \bigg) }}

Similar questions